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In structural geology it is often assumed that folds are cylindrical. However, most structures are conical
to some degree. Due to the lack of software capable of accurately estimating the best fit cone from a set
of oriented data, we developed a Mathematica application capable of (1) plotting oriented data (lines
and planes) on an equal area stereonet, (2) calculating the orientation matrix, the distribution shape
and intensity parameters, (3) plotting the eigenvectors and (4) estimating and plotting the best fit cone,
a small circle. We present both synthetic and natural data demonstrating its robustness and accuracy
calculating the best fit cone.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Folds are cylindrical, most of them have, to a certain degree, a
conical shape (Fig. 1). However, to our knowledge, the most
popular free available stereographic applications such as Stereo-
net (Cardozo and Allmendinger, 2013; Allmendinger et al., 2012),
Georient (Holcombe software), Openstereo (Grohmann and
Campanha, 2010) or Stereo32 (Roéller and Trepmann, 2008) or
other Stereonet Mathematica applications - see Mathematica for
Geology (Hanebergs) and Geological Program (Mookerjee) -
either do not provide best fit cone functionality or provide
methods which fail to estimate the best fit cone when dealing
with complex distributions. In this paper we present Mathema-
tica code which provides a robust cone fitting algorithm with the
motivation of filling the gap found in other stereographic projec-
tion software.

A conical surface is the result of rotating an oblique line (the
generator) around a defined rotation axis. In geology, geometri-
cally, a conical fold is characterized by the trend and plunge of its
axis and by the angle between the generatrix of the conical
surface and the fold axis, also known as semiapical angle (o/2)
(Wilson, 1967; Pueyo et al., 2003). Perfect cylindrical folds can be
considered as a special case of a conical fold; then have «/2 equal
to 0°. Identification and analysis of conical folds in nature are

* Corresponding author. Tel.: +34923294488.
E-mail address: dpastorgalan@usal.es (D. Pastor-Galan).

0098-3004/$ - see front matter © 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.cageo.2013.01.005

conducted using stereographic projection of geologic surfaces,
typically bedding (n-diagrams) which, when truly representative
of a conical surface, scatter along a small circle on the stereonet.
When the geometry of the studied fold is more complicated, such
as in elliptical conical folds or complex non-cylindrical folds, the
n-diagram scatters along ellipses or irregular paths. Ramsay
(1967 p. 349) indicated that conical folds are rare in nature, and
(Ramsay and Huber, 1987, p. 311) suggested that the geometry of
natural surfaces is probably more complex than a simple conical
which is probably a more accurate assessment of the situation at
most scales. Nevertheless, conical folding is often a valid approx-
imation for non-cylindrical folds at suitably chosen scales and
complex folded surfaces can be easily treated as several different
conical surfaces.

Structural geologists have shown interest in conical folding
trying to solve the problem of reconstructing bedding-parallel
sedimentary lineation orientations (Cummins, 1966; Wilson,
1967; Ramsay, 1967 pp. 496-498) and, more recently, the
problem of how to restore paleomagnetic data directions (Pueyo
et al., 2003; Weil et al., 2013) or the location of mineralizations
(Keppie et al., 2002) or hydrocarbon reservoir rocks (Mandujano
and Keppie, 2006). The most frequently described conical geo-
metry in rocks is the lateral terminations of cylindrical folds (e.g.
Webb and Lawrence, 1986). The geometry is related to the
propagation of folds during which both the interlimb tightening
and fold axis lengthening occur. Moreover, conical folds can
also form by fold interference (Ramsay, 1962; Wilson, 1967;
Pastor-Galan et al., 2012a), or by folds forming in shear zones
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Fig. 1. Differences between a cylindrical and a conical fold.

(sheath-folds, e.g. Alsop and Carreras, 2007). Nicol (1993) demon-
strated that surfaces formed by fold interference can be analysed
as composite surfaces with segments displaying conical geome-
tries. Furthermore, spatial variations in orientation of data and
fold geometry may be related to the characteristics of the
interfering fold pattern (Mulchrone, 1991; Nicol, 1993).
Groshong (2008) emphasized the importance of distinguishing
between cylindrical and conical folds because conical folds
terminate along their axial trend.

Mathematical methods have been developed to fit measure-
ments to a small circle and to quantify the suitability of the
calculated fit (e.g. Ramsay, 1967; Fisher et al., 1987). Approaches
to fitting planar data to a cone typically involve least squares
minimisation of a function involving the direction cosines of poles
to planes (Ramsay, 1967; Venkitasubramanyan, 1971; Cruden and
Charlesworth, 1972), and provide estimates for the orientation of
the cone axis and the semi-apical angle. Problems associated with
these initial methods were resolved by minimising the squares of
the actual angular deviations (Kelker and Langenberg, 1982;
Fisher et al., 1987) by making the minimisation problem
non-linear and requiring iterative techniques to determine a
solution. The problem may also be solved using the least eigen-
vector of the orientation matrix (Fisher et al., 1987, p. 33), though
this approach only works for symmetrical datasets with a semi-
apical angle less than 45°. Bingham'’s distribution on a sphere can
also be used to find the best-fit great circle to fold data forming a
pair of clusters which is often the case for geological data (Kelker
and Langenberg, 1976). Subsequently, using a transformation to
spherical coordinates (Stockmal and Spang, 1982), a least-squares
best fit was identified for the simulated data of Cruden and
Charlesworth (1972). Methods able to cope with elliptical conical
folds and statistical tests for distinguishing between circular and
elliptical data have also been developed (Kelker and Langenberg,
1987, 1988). Non-geologists’ statisticians have also shown an
interest in this problem (Mardia and Gadsden, 1977; Rivest,
2008). We propose using an implementation of the iterative
algorithm presented by (Fisher et al.,, 1987, p 140-143) that is
based on the method of Mardia and Gadsden (1977) and
the improved least-squares algorithm of Gray et al. (1980).
This method is robust to apply to non-symmetrical data and has
been proven to provide accurate solutions to different cases of

real, as is the data used in this paper, and simulated conical folds.
It works for non-symmetrical data and apical angles greater than
45°,

2. Code description and algorithms

The primary motivation for developing the code was to
provide a robust cone fitting algorithm which was lacking in
tested available software. Necessary additional functionality
includes a collection of useful methods for analysis of orientation
data typically collected by structural geologists. In this section a
brief discussion and description of the data formats, analyses and
graphical outputs are provided.

2.1. Plotting data

As far as the authors are aware, there is no internationally
recognized standard for digital storage of oriented geological data.
For this application data is stored in a text comma separated
variable (csv) file format that can be readily imported into
Mathematica and easily created in common spreadsheet packages
such as Microsoft Excel, OpenOffice, etc. The file must conform to
the following format: The first column contains either L (for linear
data) or P (for planar data). If the data are planes then the next
two columns contain either the strike and dip (using the right
hand rule, Groshong, 2008, pp. 41-43; Ragan, 2009, p. 4) or dip
direction and dip respectively. If the data are lines then the next
two columns contain the trend and plunge respectively. The final
and fourth column is reserved for categorization of data. Fig. 2
shows part of the contents of a data input file in Excel.

Once a file has been created it may be imported into Mathe-
matica using the Import command. For convenience we provide a
method, ImportSG, that simplifies the process. ImportSG takes
two arguments: the first specifies the file to be imported and the
second specifies the format used for planar data which may be
either “RHR” (i.e. right hand rule strike and dip) or “DDD” (i.e. dip
direction and dip data). ImportSG imports the data and separates
it into subsets based on data type and category and also converts
the orientation data into triplets of direction cosines, the format
used in analysis and plotting routines. The data is subdivided into
groups on the basis of whether it is planar of linear and also the
category. For each unique combination of data-type and category
a new group is created. This approach is unrestrictive but care
needs to be taken when creating input files so that the resulting
data is not too complex. It may be convenient to store files related
to a single project in a single directory and rather than having to

A 5 [ s i~
1L 176 80 Overturned %
2 L 172 70 Overturned
3 |P 190 74 Overturned
4 P 168 76 Overturned
5 |P 172 78 Overturned
|6 |P 190 72 Overturned
|7 |p 200 70 Overturned :

38 P 192 72 Overturned

= 222 50 Normal

10 L 215 57 Normal

11 P 218 51 Normal

12 |p 220 53 Normal

13.p 222 53 Normal 1o
M 4 » ¥| inner_antidine /%3 T 5 p[]

Fig. 2. Example format of data in excel. First column specifies if the data are
planar or linear and the second column is the strike, dip direction or trend
spending on the format. The third column specifies the dip or plunge and the final
column is a category for analysis of complex datasets.
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specify the full path to a file. The standard SetDirectory command
can be used to select a particular directory for use.

The method EqualAreaPlot creates equal-area stereonets and
has four arguments. The first argument is the data to be plotted
and ought to be the output from ImportSG. The second argument
specifies the size of the symbols on the stereonet and defaults to a
value of 0.02. The third argument controls the colour and shape of
the symbols used for each dataset in the data. For full control, a
colour/shape combination for each dataset can be specified,
otherwise, suitable values are randomly generated. The following
shapes are provided: “Circle”, an open circle, “FCircle”, a filled
circle, “OCircle”, a filled circle with a black outline and similarly
defined “Square”, “FSquare”, “OSquare”. The final argument is
either True or False and specifies whether or not a legend is
displayed. The text of the legend is composed from the category
and type of data. For example if the type is “L” and the category is
“F1” then the legend is “F1 (L)”. Example code:Click here to enter
text.

(* select the directory with the data *)
SetDirectory[“C:\Users\\km\\Dropbox\\research papers\\ Con-
ical Folding Mathematica\\Data”]

(* import data from csv file *)
data=ImportSG[“inner_anticline.csv”];

(* create a plot of the data *)

EqualAreaPlot[data, 0.02, {{Purple,“Square”},{Blue,“OCircle"},
{Green,"“OSquare”},{Red,“OCircle”}}, True]

The resulting plot is shown in Fig. 3. The code is fairly flexible
and allows for a reasonable level of control to the user.

For less sophisticated data analysis, another more general
SimpleEqualAreaPlot method is provided which takes four argu-
ments. The first is a list of either strikes and dips or trends and
plunges, the second specifies the type of data (either “P” or “L”
respectively), the third determines the size of the symbol and the
final argument specifies the type in the same way as for Equal-
AreaPlot above. Example code:Click here to enter text.

(* some data to be plotted *)
data = {{350,25},{120,56},{249,22}};
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Fig. 3. An example stereonet of planar data categorized as either normal or
overturned.

(* plot the data *)
SimpleEqualAreaPlot[data, “P”, 0.02, {Black,”FCircle”}]

2.2. Orientation matrix and distribution classification

As it is standard practice in the analysis of oriented data the
eigenvalues and eigenvectors of the orientation matrix provide
a good summary of oriented data and permit classification.
The orientation matrix is calculated by pre-multiplying the matrix
of direction cosines by its transpose (Fisher et al., 1987, p. 33).
Given a set of direction cosine data the orientation matrix is

XX XXy Xz
T=| > xy; ZY,Z > oVizi
Yxizi Yy Sz

The eigenvalues and corresponding eigenvectors of T are
denoted by 7t4,72,73 and ug,upus3 respectively where
0 <711 <71 <73. If the normalized eigenvalues of the orientation
matrix are given by t,=1¢/n etc. then the shape of the distribu-
tion is described by

. _ l08(t3/12)
log(t2/71)

where 7y close to O is a girdle distribution and y near 1 is mixed
and y> >1 is a uniaxial cluster distribution. The strength or
intensity of the distribution is described by

{=log(t3/T1)

where values close to 0 indicate weak distributions and strong
distributions occur for { greater than around 3

In the case of a uniaxial distribution 73 is considerably larger
than the other two eigenvalues and the eigenvector us provides a
good estimate of the average orientation. In the case of a girdle
distribution 75 and 7, are larger than 7, and u; is a good estimate
for the pole to the best fit great circle.

For convenience a method named AnalyseSGData is provided
which takes a single dataset returned from ImportSG as its
first argument and the second argument is either “T” for text
output or “G” for graphical output. Further arguments control
the graphical output. The third argument controls the
symbol used for data, the fourth argument controls the eigen-
vector symbol and the final argument specifies the colour
of the great circle arcs. Textual output consists of the norma-
lized eigenvalues, the trend and plunge of the eigenvectors, the
shape and strength parameters. Example code:Click here to enter
text.

(* select the directory with the data *)
SetDirectory[“C:\\Users\km\\Dropbox\\research
papers\\Conical Folding Mathematica\\Data”]

(* import data from csv file *)
data=ImportSG[“inner_anticline.csv”];

(* check the number of datasets *)

Length[data]

2Click here to enter text.

(* analyse each dataset separately and get textual output *)
AnalyseSGData[data[1],“T”]
{{0.00249152,0.0348249,0.962684},{{308.666,70.0896},
{185.671,11.1581},{92.3696,16.2737}},1.25856,5.95683}
AnalyseSGData[data[2],“T”]
{{0.0618874,0.453435,0.484678},{{20.4175,22.6605},
{149.174,56.3001},{279.942,23.5327}},0.0334578,2.05817}
(* generate graphical output *)
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AnalyseSGData[ data[1], “G”, {Black, “Square”}, {Black,
“QCircle”}, Black]
AnalyseSGData[ data[2], “G”, {Black, “Square”}, {Black,
“OCircle”}, Black]

The associated graphical output is shown in Fig. 4. The
eigenvectors are marked on the resulting plot and labelled by
their corresponding eigenvalue ( to ).

2.3. Fitting a cone

The method implemented for fitting a cone is that of Fisher
et al. (1987) pp. 140-143, which is based on Mardia and Gadsden
(1977) and seeks to minimize the angular distance between
points distributed on the sphere and a small circle, i.e. the cone.
Let the cone axis have direction cosines A=(/,u,v) and angular
distance from a point on the cone to the axis is 1. The equation of
directions/points (x,y,z) on the cone is

XA+YU+2zv = oS Y
Let the j*" estimate of 1 be J; and that of i be ;. The iterative
algorithm proceeds as follows:

Fig. 4. (a) Eigen analysis of cluster data, note that the eigenvector corresponding
to the largest eigenvalue (u3) parallels the average direction. (b) In this case the
eigenvector corresponding to the lowest eigenvalue parallels the pole to the best
fit great circle.

(1) Take us to be an initial guess for (4,u,v), i.e. Ag=us.
(2) Calculate y; from

S/ 1-Xidio1)?
tany; =

i1 Xidj

(3) Calculate the following vectors:
_ Xidi)Xi—2j i

V1=Xidj)

Y = cosy; i Xi—siny; ix,»

i=1 i=1

Xj =1n

(4) Repeat steps 2 and 3 until the difference between the current
and previous estimates for 4 and y is acceptably small.

The algorithm works well when all the target data occupies a
single hemisphere but may fail otherwise. This is fixed by
applying a rotation to the data such that the first eigenvector
(u3) is rotated into parallelism with the z-axis. The analysis is then

a

270

Fig. 5. Best fit cones using the algorithm described.
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carried out as described above except that the fitted cone axis is
rotated back to the correct orientation.

The algorithm works well when the apical angle is less than
approximately 45°. For larger apical angles the algorithm may fail. This
is due to exclusively using the third eigenvector as an initial guess for
the cone axis. If the apical angle is less than 45° then us takes an
orientation close to the cone axis. On the other hand if the apical axis
is greater than 45° then it may be one of the other eigenvectors which
is close to the cone axis and should be used as an initial guess. Thus a
parameter is provided which allows the user to specify the eigenvector
to use as an initial guess. The AnalyseSGData method of the previous
section allows visual inspection to deduce the correct initial eigen-
vector to be selected (see Section 2.4 for examples).

Cone fitting is facilitated by the method FitConeSG which takes a
single dataset returned from ImportSG as its first argument and the
second argument is either “T” for text output or “G” for vectorial
graphical output. The third argument controls the symbol used for
data, the fourth argument controls the cone axis symbol and the
fifth argument specifies the colour of the cone curve. The final
argument must be one of 1, 2 or 3 and specifies the eigenvector to
be used as an initial guess, by default it takes the value 3. The textual
output returns the trend and plunge of the cone axis and the apical
angle. After importing the data from the file “inner_anticline.csv” as
was done in the previous example:Click here to enter text.

(* analyse each dataset separately and get textual output *)
FitConeSG|data [1], “T"]

{{357.535, 40.7466}, 26.9394}

FitConeSG|data [2], “T”]

{{273.907, 79.7289}, 54.54}

(* generate graphical output *)

FitConeSG[data [1], “G”, {Black, “Circle”}, {Black,
“FCircle”}, Gray]
FitConeSG[data [2], “G”, {Black, “Circle”}, ({Black,

“FCircle”}, Gray]

Table 1
Synthesis of every argument necessary for conical best fit.

The corresponding graphics are illustrated in Fig. 5. We give a
synthesis of the possible commands in Table 1.

2.4. Generating synthetic data and testing cone fitting

For the purposes of testing the cone fitting algorithm a method
called GenSGData was developed to generate synthetic conically
arranged data. Its first argument is the trend and plunge of the cone
axis, the second argument is the apical angle, the third argument
specifies the standard deviation around the apical angle and the
final argument specifies the number of data to generate. The
method works by generating a unit vector v randomly oriented in
the xy-plane and then rotating a unit vector parallel to the z-axis
around v by an angle selected from a normal distribution with
mean equal to the apical angle and the specified standard deviation.
Finally the cone is rotated in parallel with the desired cone axis.

To analyse the data produced by GenSGData it is necessary to place
it in a csv file confirming to the format specified earlier. This process is
simplified by the ExportSGData method which takes as its first
argument the trend/plunge data generated by GenSGData, the second
argument is the name of the csv file and the last argument is the
category.

Two example datasets presented in Fig. 6 indicate the robust-
ness of the method and code.

Example 1 (. see Fig. 6a and b):

(* generate data with cone axis trending 054 and plunging 60,
apical angle 70, standard deviation of 5 and 50 points *)
datatest = GenSGData[{54, 60}, 70, 5, 50];

(* Export the data to the file “testl.csv” and category “Test
1" 7)

ExportSGData[datatest, “test1.csv”, “Test1”]

(* Import the data from the file *)

data = ImportSG[“testl.csv”, “DDD"];

Method Parameters Description
ImportSG Filename Name of file to be imported
Format Data format, either righthand rule “RHR” or dip/dip direction “DDD”
EqualAreaPlot Data Data to be plotted (output from ImportSG)
Pointrad Size of points plotted (default value 0.02)
Igoptions Specify colour/shape of each dataset in a list e.g. {{Blue, OCircle},{Red FCircle}}
Legend True/False display a legend or not
SimpleEqualAreaPlot Data Data to plot e.g. {{350,25},{120.56},{249,22}}
Type Either “P” or “L” to specify planar or linear data
Pointrad Size of points plotted (default value 0.02)
Igoptions Specify colour/shape of the plotted points e.g. {Blue, OCircle}
Labels An optional ordered list of labels to be placed near each point
AnalyseSGData Data A single dataset returned from ImportSG
Out “T” for textual output and “G” for graphical output, default value“T”
Goptdata Specify colour/shape of the plotted points e.g. {Blue, OCircle}
Gopteig Specify colour/shape of the eigenvector directions e.g. {Blue, OCircle}
Arccolor Specify colour of arcs e.g. Black
FitConeSG Data A single dataset returned from ImportSG
Out “T” for textual output and “G” for graphical output, default value“T”
Goptdata Specify colour/shape of the plotted points e.g. {Blue, OCircle}
Gopteig Specify colour/shape of the cone axis e.g. {Blue, OCircle}
Arccolor Specify colour of best fit cone trace e.g. Black
Eigindex Specify the index of the eigenvector to use as a seed in the algorithm (1,2 or 3)
GenSGData Coneaxis Trend/plunge of the cone axis e.g. {54,60}
Apicalangle Apical angle of the cone e.g. 30
Stddev Controls the level of dispersion around the apical angle
n Number of data to generate
ExportSGData Data A dataset created by GenSGData
File File in which to store the data

Category

Specify a category for the data
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180

Fig. 6. Synthetically generated data demonstrating the robustness of the algorithm against large apical angle and also data which is not all contained in the same
hemisphere. (a) In this case the apical angle is large and the first eigenvector must be used as an initial guess. (b) In this case the apical angle is moderate and the third

eigenvector is used as an initial guess.

(* check which eigenvalue to use see Fig. 6 a *)
AnalyseSGData|

(1) data[[1]], “G”, {Black, “Square”}, {Black, “OCircle”}, Black]
(* fit a cone: textual output *)

FitConeSG|[data[1], “T”, {Black, “Circle”}, {Black, “FCircle”},
Gray, 1]

{{55.5225, 60.3531}, 71.4319}

(* fit a cone: graphical output see Fig. 6 b *)
FitConeSG|data[1], “G”, {Black, “Circle”}, {Black, “FCircle”},
Gray, 1]

Example 2. (see Fig. 6¢c and d):

(* generate data with cone axis trending 275 and plunging 20,
apical angle 30, standard deviation of 5 and 50 points *)
datatest = GenSGData[{275, 20}, 30, 5, 50];

(* Export the data to the file “testl.csv” and category “Test
17 %)

ExportSGData[datatest, “test1.csv”, “Test1”]

(* Import the data from the file *)
data=ImportSG[“test1.csv”, “DDD"];

(* check which eigenvalue to use see Fig. 6 ¢ *)
AnalyseSGData]

(1) Data [[1], “G”, {Black, “Square”}, {Black, “OCircle”}, Black]
(* fit a cone: textual output *)

FitConeSG|data [1], “T”, {Black, “Circle”}, {Black, “FCircle”},
Gray, 3]

{{275.064, 20.7766}, 30.2915}

(* fit a cone: graphical output see Fig. 6 d *)

FitConeSG|[data [1], “G”, {Black, “Circle”}, {Black, “FCircle”},
Gray, 3]

3. A natural example

One of the possible locations of conical folding is in orogens
where a phase of deformation is primarily caused by differential
rotation around a vertical axis affecting a population of geological
surfaces with a variety of initial orientations (Pastor-Galan et al.,
2012a) meaning that the orogen shows some degree of curvature
in plan view. This plan view curvature is recognized in a large
number of ancient and modern orogens (e.g. Weil et al., 2000,
2001; Johnston, 2001; Kaymakci et al., 2003; Weil and Sussman,
2004; Marshak, 2004; Van der Voo, 2004; Rosenbaum and Lister,
2004; Allmendinger et al., 2005; Dupont-Nivet et al., 2005;
Johnston and Mazzoli, 2009; Johnston and Gutierrez-Alonso,
2010; Pastor-Galan et al, 2011, 2012b; Pastor-Galan et al.,
2013; Rosenbaum et al., 2012; Li et al., 2012; Shaw et al., 2012).

A well known orocline or secondary arc is the Ibero Armorican
orocline (Fig. 6), which has been recently defined as a true thick-
skinned orocline (Gutiérrez-Alonso et al., 2004; Pastor-Galan
et al.,, 2012b), constraining kinematics and deformation timing
(Weil et al., 2001; Gutiérrez-Alonso et al., 2012; Pastor-Galan
et al,, 2011) which contains in its core the ca. 180° (isoclinally)
buckled foreland fold-and-thrust belt of the Carboniferous
Variscan orogenic belt, known as the Cantabrian orocline. This
curved sector of the orogenic belt is characterized by two
different fold sets: (1) one runs parallel to the outcrops of the
main thrusts and describes a horseshoe shape concave towards
the east, and (2) another is radial to the arc (Julivert and Marcos,
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Fig. 7. (a) Situation of the Cantabrian Orocline into the West European Variscides. (b) Studied area showing the mechanism of formation of the Cantabrian Orocline
suggested by Pastor-Galan et al. (2012a) and the stereograms obtained with the Mathematica code presented in the different areas of the studied structure.

1973). A detailed geometric study of the fold interference patterns
in the Cantabrian Arc revealed the conical nature of the folds
belonging to the radial set. These conical folds developed with
different geometrical characteristics (semiapical angles and axis
attitudes) depending on the initial orientation and geometry of
the folded surfaces. They are interpreted to result from a vertical
axis rotation during oroclinal buckling of the Variscan Belt in NW
Iberia (Fig. 7; Pastor-Galan et al., 2012a).

Data consisting of 578 strike and dip measurements were
collected from bedding surfaces of different rock formations
(Fig. 7; see Pastor-Galan et al., 2012a for further information) in
the Cantabrian Arc. To obtain the best conical fit, folds that have
overturned limbs were projected in the lower hemisphere
together with the data from the normal limbs.

The geometric study of the fold interference patterns in the
Cantabrian Arc revealed the conical nature of the folds belonging
to the radial set (Fig. 7) These conical folds developed with
different geometrical characteristics depending on the initial
orientation and geometry of the folded surfaces. This conical
folding is interpreted to result from a vertical axis rotation during
oroclinal buckling of the Variscan Belt in NW Iberia (Pastor-Galan
et al., 2012a).

4. Conclusions

Due to the lack of available software adequate to do a proper
conical fit, we have developed a Mathematica code implementing
the Fisher et al. (1987) pp. 140-143, based on Mardia and
Gadsden (1977), for least-squares cone fitting. With this code it
is possible to obtain semi-apical angles of the cones, orientation
of fold axes and errors. Additionally, it exports the stereographic
projection as vector graphics format (.pdf files) facilitating the
edition of figures to be published.

We have tested the code firstly with synthetic datasets in
order to notice the robustness of the method and code. After that,
we tested the method and code with a complex geometric natural
example from NW Iberia. Both tests indicate that the method
used is confident and the robustness of the code to obtain the best
conical fit using stereographic projection.
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