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The Kitomyo Schist fromKurosegawa Belt, Shikoku, has been long considered as the oldest records of subduction
metamorphism in Japan, based on an early 1970s K–Ar dating of white mica. The schist consists of mafic and
pelitic layers and occurs as a tectonic block within serpentinite. Reappraisal of the schist confirmed the schist
is characterized by an epidote-amphibolite peak metamorphic facies. The mafic portion is characterized by
zoned amphibole + epidote + chlorite + titanite ± phengite ± rutile. The presences of relict rutile surrounded
by titanite and the barroisitic cores of zoned amphibole suggest a high-pressure intermediate type metamor-
phism at the metamorphic peak (P = ~0.8–1.5 GPa and T = ~500–570 °C). The presence of Mn-rich garnet
and the lack of biotite, oligoclase and paragonite also support high-pressure intermediate type metamorphism
that eliminate the possibility of a typical blueschist-facies metamorphism. New SHRIMP and LA-ICPMS zircon
U–Pb geochronology on a pelitic sample show detrital grains of Mesoproterozoic and Early Paleozoic ages, sug-
gesting a maximum deposition age for the trench-fill sediment of ~440 Ma. Also the U–Pb data confirmed
~360 Ma overgrown rims that might have formed during the subduction zone epidote-amphibolite facies meta-
morphism. Reappraisal revealed that the Kitomyo Schist is not the oldest high-pressure type schist in Japan and
rather comparable to the Late Paleozoic RengeMetamorphic Rocks and their equivalents in the Kurosegawa Belt.
The Devono–Carboniferous high-pressure metamorphic rocks in Japanmight have been pairedwith their coeval
batholiths along the ‘Greater South China’ margin that was extensively eroded during later tectonic processes.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

The Japanese islands represent the longest record of active ‘Pacific-
type’ orogeny resulting from oceanic subduction, convergence-related
arc plutonism, oceanward-accretion, and landward-erosion in the
world (e.g., Isozaki, 2019; Isozaki, Aoki, Nakama, & Yanai, 2010;
Maruyama, 1997). Japan likely began its ‘Pacific-type’ oceanic subduc-
tion during the latest Neoproterozoic or earliest-most Paleozoic times
following the Early Paleozoic high-pressure amphibolites and schists,
jadeitites and rodingites found in the Hida-Gaien, Oeyama, Renge and
Kurosegawa Belts (e.g., Kunugiza et al., 2017; Maruyama & Ueda,
1975; Tsujimori, 2017; Tsujimori & Liou, 2004; Tsujimori, Liou,
auchi, Aoba-ku, Sendai, Miyagi
Wooden, & Miyamoto, 2005). The gabbroic rocks of hanging wall
ophiolite, ‘Oeyama Ophiolite’ shows 545 ± 3 Ma zircon U–Pb age and
566 ± 95 Ma Sm–Nd whole-rock isochron age (Kimura & Hayasaka,
2019). This very early stage of intra-oceanic subduction zone system
has been sometimes described as ‘proto-Japan’ (e.g., Isozaki, 2019;
Isozaki et al., 2010). Isozaki et al. (2010) proposed a schematic oceanic
arc–trench cross section of ‘proto-Japan’ at ~520–480 Ma that delin-
eated ‘450 Ma (oldest) blueschist’, causing misunderstanding about
the age of the oldest blueschist-facies (glaucophane-schist facies)meta-
morphism in Japan. Strictly speaking, Early Paleozoic blueschist-facies
metamorphic rocks have not yet been described in Japan (cf.,
Tsujimori, 2010).

The inferred two oldest localities with high-pressure (HP)-type
metamorphic rocks in Japan are: (i) the Early Paleozoic kyanite- and
paragonite-bearing epidote amphibolite in the Oeyama ultramafic
body of the Oeyama Belt (~403–440 Ma Fuko-Pass Metacumulates:
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Fig. 1. (a) Simplified geological map of Shikoku delineating the different belts and the
location of Kitomyo area, where samples were collected. (b) Detailed geological map of
the sampling area (ms: mafic schist. ps: pelitic schist).
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Tsujimori, Nishina, Ishiwatari, & Itaya, 2000; Tsujimori & Liou, 2004);
and (ii) the Early Paleozoic pelitic and mafic schists of the Kitomyo
area of the Kurosegawa Belt (~402–445 Ma Kitomyo Schists:
Maruyama & Ueda, 1975). Although the Fuko Pass Metacumulates
bears a mineralogical indication of HP metamorphism most likely hav-
ing occurred in ‘proto-Japan’ margin, their protolith, mainly troctolitic
igneous cumulates, is not typical of ‘Pacific-type’ subduction complexes.
The Fuko Pass protolith geochemistry as well as the presence of spinel
granulite-facies relict minerals suggest an unusually thick oceanic pla-
teau (Tsujimori & Ishiwatari, 2002). In contrast, the Kitomyo Schist
has a typical accretionary complex protolith consisting of metabasaltic
and metasedimentary rocks. However, no previous descriptions of the
schist included a detailed study on index minerals (e.g., glaucophanitic
amphibole and/or lawsonite) to determine its metamorphic grade.
Moreover, the only geochronological data of the Kitomyo Schist is
white mica K–Ar dating from the early 1970s that requires reexamina-
tion (e.g., Nishimura, 1998; Tsujimori & Itaya, 1999). We conducted a
petrological and geochronological reappraisal of the Kitomyo Schist to
understand the first generation of subduction zone metamorphic
rocks within the ‘proto-Japan’ arc–trench system.

2. Geological outline

The Kurosegawa Belt is a composite geotectonic unit, a tectonicmix-
ture of pre-Jurassic components of Southwest Japan (Fig. 1); various
fragments of the pre-Jurassic geotectonic units occur as blocks or sheets
within a serpentinite-matrix mélange. The Kurosegawa Belt of Shikoku
is composed of variable scale serpentinite bodies with Late Paleozoic
blueschists (equivalent of the blueschists in the Hida-Gaien, and
Renge Belts of the Hida and Chugoku Mountains), Early Paleozoic non-
metamorphosed sedimentary rocks, and Early Paleozoic granitoids
and rare granulite (e.g., Aoki, Isozaki, Yamamoto, Sakata, & Hirata,
2015; Hada, Ishii, Landis, Aitchison, & Yoshikura, 2001; Maruyama,
1981; Maruyama, Banno, Matsuda, & Nakajima, 1984).

The Kitomyo area is located at the eastern part of the Kurosegawa
Belt of Shikoku (Fig. 1). In this area, a fault-bounded serpentinite body
(2.5 × 4.5 km) bears amphibolite (or mafic schist) and pelitic schists.
The area is about 100 km east of the Ino Formation where pelitic schists
associated with glaucophane- and barroisite-bearing schists yields
phengite K–Ar ages of 394–352 Ma (four samples) and 327–317 Ma
(two samples) (Ueda, Nakajima, Matsuoka, & Maruyama, 1980). Ac-
cording to Maruyama and Ueda (1975), the serpentinite contains bru-
cite and anthophyllite. Both mafic and pelitic schist are characterized
by the occurrence of porphyroblastic albite. Maruyama and Ueda
(1975) dated white mica (K–Ar) from two psammitic schists (sample
73040305 and 71071401) in Tohoku University, obtaining 445 Ma and
402Ma, respectively. Based on the age, they considered that the timing
of metamorphism was older than 445 Ma.

3. Methods

3.1. Petrography

We selected two samples of the Kitomyo Schist (KTM08 pelitic
schist, and KTM11 mafic schist). Textures of polished petrographic
thin-sections were observed using a JEOL JSM-7001F field emission-
scanning electron microscope (FE-SEM), equipped with an EDS, Oxford
INCAX-act energy dispersive X-ray spectrometers at TohokuUniversity.
Major-element quantitative analyses were conducted using a 15 kV ac-
celeration voltage, a 1.4 nA beam current, and a 70 s integration time in
the EDS system.

We also analyzed the whole-rock composition of the mafic schist
(KTM11) to constrain the nature of its protolith and perform a P–T
pseudosectionmodel. The analysis was carried out at Activation Labora-
tories Ltd., Canada, using Code 4Litho Lithogeochemistry Package; the
2

package uses lithium metaborate/tetraborate fusion with inductively
coupled plasma optical emission spectrometry (FUS-ICPOES) and in-
ductively coupled plasma mass spectroscopy (FUS-ICPMS) for the
major- and trace-element analyses, respectively.
3.2. Geochronology

We crushed the samples with a Yasui Kikai Multi Rock Pressure and
then sieved them using Nichika NylonMesh (#150 [~100 μm] and #100
[~150 μm]) to obtain the proper grain-size for concentrating zircons and
phengites. Zircons were concentrated by combining conventional mag-
netic and heavy liquidmethods. Hand-picked zircon grains under a bin-
ocular microscope were mounted in 1-in. round epoxy resin (Struers
Specifix-40) discs and polished to expose their cores. For the polishing,
a Metkon Forcipol 1 V grinder and a 3 M aluminum oxide lapping film
were used.

Cathodoluminescence (CL) images of zircon in polished mount of
zircon from two sample rocks were observed using a Hitachi S-3400N
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SEM, equippedwith aGatanmodelMiniCL system in TohokuUniversity.
The CL observation was conducted using a 25 kV accelerating voltage
and a 90 nA probe current.

In-situ zircon U–Pb dating was carried out in the Okayama Univer-
sity of Science by using a Thermo Fisher Scientific iCAP-RQ single-
collector quadrupole ICPMS coupled to a Teledyne Cetac Technologies
Analyte G2 ArF excimer laser ablation (LA) system equipped with a
HelEx 2 volume sample chamber. The laser ablation of zircons was con-
ducted at the condition of laser spot size of 25 μm with fluence of
1.8 J·cm-2 and repetition rate of 5 Hz. Other conditions of LA-ICPMS
method are referred to Aoki, Aoki, Tsuchiya, and Kato (2019) and
Aoki, Aoki, Tsujimori, Sakata, and Tsuchiya (2020). Zircons were also
dated using a SHRIMP IIe/MC instrument at the Korea Basic Science In-
stitute (KBSI) Ochang Center, Korea. Analytical protocols are followed
Williams (1998), and reduction of the raw data was undertaken using
the software ‘SQUID’ (Ludwig, 2001). K–Ar age of the phengite sepa-
rates was determined in the Hiruzen Institute for Geology and Chronol-
ogy Co. Ltd.; the analytical protocol was followed by Nagao, Nishido,
Itaya, and Ogata (1984) and Itaya et al. (1991).

4. Results

4.1. Mineralogical and petrological characteristics

4.1.1. Pelitic schist (KTM08)
Sample KTM08 (Figs. 2a,b) is a quartzo-feldspathic mica schist with

quartz-rich layers. Porphyroblastic albite is scattered in the matrix, and
it consists mainly of quartz, albite, phengite, secondary chlorite, and
minor amount of epidote ([Fe3+/ (Fe3+ + Al)] = 0.19–0.24), tourma-
line, ilmenite, and apatite. Oriented lepidoblastic phengite defines a
penetrative schistosity. Most garnets (Fig. 2b) (aalm37–68ggrs23–33-
ssps1–31Ppyr<1) are very small (0.03–0.08 mm) subhedral to euhedral
grains and included within porphyroblastic albite. Euhedral grains
Fig. 2.Microphotographs showing themineral assemblage of the collected samples. (a) Photom
X-ray (Mn) image of small garnets in porphyroblastic albite. (c) Photomicrographof theKTM11
the rutile replaced by titanite.
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show distinct prograde chemical zoning in spessartine decrease toward
the rims. Phengite is lepidoblastic (0.3–1 mm in size) in the matrix and
has occasionally intergrown with secondary chlorite; it has a composi-
tion with 3.3–3.5 Si atoms per formula unit (a.p.f.u.) for O = 11. Al-
though some phengites in quartz-rich layers are coarse-grained,
compositional difference among grain size was not confirmed. Epidote
occurs as discrete subhedral grains in association with quartz. The pres-
ence of garnet+albite+phengite and the lack of biotite, oligoclase and
paragonite suggest that the schist underwent a HP intermediate-type
metamorphism rather than jadeite–glaucophane type (Miyashiro,
1961). In fact, the mineral assemblage is similar to the garnet zone of
the Sambagawa metamorphic belt.
4.1.2. Mafic schist (KTM11)
The sample KTM11(Figs. 2c,d) is a well-deformed, amphibolitic

schist that consists mainly of clinoamphiboles andminor amount of ep-
idote ([Fe3+/(Fe3++Al)] = 0.28–0.35), titanite, rutile, phengite and
chlorite. Foliation is defined by a preferred orientation of fine-grained
acicular pale-greenish actinolite and minor lepidoblastic phengite
(3.5–3.6 Si a.p.f.u.). Some coarse-grained blue-greenish barroisitic am-
phiboles (0.5–1 mm in size; [B]Na [Na in the B-site] values reach up to
0.67; Fig. 3) are wrapped around by layers of acicular actinolite
(Figs. 2c and 3). Such textural relations indicate that relict, coarser-
grained, blue-greenish barroisitic amphibole underwent grain-size re-
duction by recrystallization during deformation. Some titanites reach
up to 1 mm in size and contains abundant rutile (Fig. 2d); such textural
relations indicate that relict rutile was replaced by titanite during retro-
grade metamorphism. The occurrence of relict rutile together with
barroisitic amphibole and epidote supports a HP intermediate type
metamorphism. Moderate to high [B]Na content of amphibole is indica-
tive of high-pressure (e.g., Hosotani & Banno, 1986; Nakamura & Enami,
1994; Okamoto & Toriumi, 2005; Otsuki & Banno, 1990).
icrograph of the KMT08 pelitic schist, showing albite, garnet and phengite. (b) FE-SEM-EDS
mafic schist showing barroisite, titanite rutile and actinolite. (d) Photomicrograph showing



Fig. 3. [B]Na (Na in the B-site) versus [4]Al (Al in tetrahedral site) diagram for the subcalcic
and calcic amphiboles of Kitomyo Schist (sample KTM11). For comparisons, subcalcic and
calcic amphiboles of Sambagawa mafic schist (Okamoto & Toriumi, 2005) and sodic,
subcalcic and calcic amphiboles of Renge metamorphic rocks (Tsujimori, Liou, Ernst, &
Itaya, 2006) are also shown.

Fig. 4. Bulk-rock compositions of the KTM11mafic schist sample of the Kitomyo Schist. For
comparisons, Fuko Pass metacumulates [FPM] (Tsujimori & Ishiwatari, 2002), Yatsushiro
mafic granulites [YSGr] of the Kurosegawa Belt (Osanai et al., 2014) and Saijo gabbros
[SJGb] of the Oeyama Ophiolite (Kimura & Hayasaka, 2019) are also plotted. (a) N-
MORB-normalized trace-element pattern. Normalizing values are from Sun and
McDonough (1989), except Sc, Cr and Ni from Pearce (1982). (b) SiO2 versus TiO2 and
FeOT diagrams.
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The sample KTM11 is characterized by somewhat peculiar bulk-rock
composition (Table 2). It is quartz normative and shows moderate SiO2

(51.8 wt%), low CaO (5.3 wt%) and Al2O3 (9.6 wt%), with MgO (11.3 wt
%), FeOT (12.2 wt%; total Fe as FeO), Na2O (1.8 wt%), K2O (1.09 wt%),
TiO2 (0.78 wt%); the loss of ignition was 4.7 wt%. The high MgO+ FeOT

and Ni (450 μg·g−1), Cr (830 μg·g−1) and low CaO + Al2O3 and Sr
(31 μg·g−1) (Table 2; Fig. 4) suggest that plagioclase-poor cumulate
protolith; this is also supported by a clear negative Eu anomaly in N-
MORB-normalized trace-element pattern (Fig. 4a). Comparing with
geochemical features with Fuko Pass metacumulates (Tsujimori &
Ishiwatari, 2002), gabbroic rocks of the Sanjo ultramafic body of the
Oeyama Ophiolite (Kimura & Hayasaka, 2019), and Yatsushiro mafic
granulites of the Kurosegawa Belt of Kyushu (Osanai et al., 2000)
KTM11 has no similarity with those Early Paleozoic rocks, expecting a
similar FeOT and SiO2 contents (Fig. 4b).
4.1.3. P–T condition of metamorphism
Pelitic schist KTM08 is characterized by amineral assemblage of gar-

net + phengite + quartz + albite ± chlorite. The presence of garnet
and the lack of biotite, oligoclase and paragonite indicate that the schist
underwent a HP intermediate type metamorphism similar to apparent
mineral assemblage of the garnet zone of the Sambagawametamorphic
belt (e.g., Aoki,Maruyama, Isozaki, Otoh, & Yanai, 2011; Itaya, Tsujimori,
& Liou, 2011).

The P–T conditions for the HP intermediate type metamorphism
characterized by the assemblage barroisite + epidote + rutile can be
constrained through the use of phase equilibria. Based on the bulk-
rock composition of KTM11, we modeled a P–T pseudosection (equilib-
rium phase diagram) using THERIAK-DOMINO software (de Capitani &
Petrakakis, 2010) to evaluate quantitatively the P–T stability field of
barroisitic amphibole. The pseudosection uses the thermodynamic
dataset of Holland and Powell (1998); we adopted the solid solution
models of minerals that used in Tsujimori and Ernst (2014). The calcu-
lated chemographic relations shows a P–T space of coexistence of
barroisitic amphibole with epidote and rutile at P = ~0.8–1.5 GPa and
4

T = 500–570 °C (Fig. 5a). Okamoto and Toriumi (2005) applied the
Gibbs' method for subcalcic amphiboles in mafic schists of the
Sambagawa Belt of Shikoku and estimated its P–T conditions. Using a
new reference P–T condition for the Gibbs' method (Uno, Iwamori, &
Toriumi, 2015), we calculated P–T conditions of amphiboles from the
Kitomyo Schist and those from the Sambagawa Belt (Okamoto &
Toriumi, 2005) (Fig. 5a). The P–T conditions based on the Gibbs'method
for Kitomyo Schist overlaps with the P–T estimates of barroisitic amphi-
boles of Sambagawa mafic schist (Fig. 5a).

The observed retrograde assemblage fits those of a typical
greenschist facies. The absence of biotite and high-Si phengite suggests
P=~0.6 GPa at T=350 °C for the retrograde stage. The retrograde P–T
path from epidote-amphibolite to greenschist facies (Fig. 5b) is rela-
tively common in HP intermediate type metamorphic belt, such as
Sambagawa Belt (Okamoto & Toriumi, 2005). Although the prograde
P–T path could not be constrained in the Kitomyo Schist, the retrograde
evolution suggests that the Kitomyo Schist had a cooling history similar
to the coherent unit of the Sambagawa Belt, before it had trapped as a
tectonic block. Such retrograde path is also common in some Renge



Fig. 5. (a) Equilibrium phase diagrams evaluating the stability field of KTM11 in greenschist–amphibolite facies. For comparisons, P–T estimates based on Gibb'smethod for barroisite and
hornblende of Sambagawa schists by Okamoto and Toriumi (2005) are also plotted. (b) A P–T diagram showing a retrograde P–T path of the Kitomyo Schist (sampleKTM11) and P–T fields
for the inferredmetamorphic condition of the Type I and Type II Rengemetamorphic rocks (Tsujimori, 2010); prograde and retrograde P–T paths (grey arrows) are after Tsujimori (2010),
Tsujimori and Matsumoto (2006), and Shinji and Tsujimori (2019).
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metamorphic rocks (e.g., Kunugiza et al., 2017; Nakamizu, 1989).
Tsujimori (2010) grouped such Renge Metamorphic Rocks as Type II,
which do not contain glaucophane and differ from the P–T trajectories
of glaucophane-bearing Type I blueschist and glaucophane-bearing
eclogite). Petrological features of the Kitomyo Schist suggest similarity
to the Type II Renge Metamorphic Rocks which do not contain
glaucophane (Tsujimori, 2010).

4.2. Geochronology

Zircons (~60–150 μm) from the sample KTM08 have stubby and
euhedral morphology and show internal CL texture. Most grains have
5

thick cores exhibiting clear oscillatory zoning mantled by very thin
overgrown rims (for example, grains L1, S2 and S5 of Fig. 6). The rims
show high CL intensity. A few grains do not show obvious internal zon-
ing (grain L2) and/or exhibits distinct highly-luminescent inherited
corewithmantled by faintly patchy dark-CL domain (grain S8). The zir-
con domains exhibiting oscillatory and strips of different CL intensity
suggests magmatic origin. In contrast, thin rimswith bright CL are char-
acteristic for hydrothermal/metamorphic overgrowths (e.g., Aoki et al.,
2020). Twelve zircon grains were analyzed using SHRIMP and LA-
ICPMS after textural observations. The 206Pb/238U ages of oscillatory
zoned zircons show a cluster at ~440 Ma (weighted mean 443 ± 2 Ma
[MSWD = 1.92, n = 16]) and much older grains of Paleoproterozoic



Fig. 7. (a) Tera-Wasserburg concordia diagram for concordant data of zircons form theKitomyo Schist (sampleKTM08). (b) Enlarged plots for a ~ 440Ma cluster and two overgrowth rims.
(c) Tera-Wasserburg concordia diagram showing an isochron line defined by discordant data between the two rim ages and a Mesoproterozoic ages.

Fig. 6. Cathodoluminescence (CL) images of thirteen zircon grains separated from the Kitomyo Schists for LA-ICPMS and SHRIMP analyses. Circles indicate the laser ablation spots for the
grains L1, L2, L3 and L11 and the ion beam spot for the grains from S1 to S9.
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(206Pb/207Pb ages of 2.44 Ga, 2.34 Ga and 1.86 Ga) andMesoproterozoic
age (206Pb/207Pb age of 1.53 Ga) (Table 3, Fig. 7a). Relatively wide por-
tion of two overgrowth rims (S3 and S7 of Fig. 6) were dated using
SHRIMP. The rims yield 206Pb/238U age of 362 ± 7 and 391 ± 5 Ma
(Table 3; Fig. 7). Since the later spot was overlapping partially to the
mantle of grain, the timing of rim overgrowth should be younger than
391 Ma. If we consider discordant data between the two rim ages and
a Mesoproterozoic age, the scattered trend defines an isochron line
with a lower intercept at 379 ± 21 Ma [n = 7] (Fig. 7b).

We could separate only one zircon grain from the KTM11 mafic
schist. The grain displays faintly planar banded zoningwith a thin over-
grown rim of bright luminescence (L11 of Fig. 6). Three spot analyses on
the banded zoned domain did not show concordance. The apparent
206Pb/238U ages, 671 ± 27 Ma, 572 ± 18 Ma, 473 ± 15 Ma (Table 3),
may suggest Early Paleozoic formation of the protolith.

New phengite K–Ar age was shown in Table 4. It is noteworthy that
the new data, 400.2 ± 7.9 Ma, for phengite separates (8.139 ± 0.16 wt
% K) overlaps the previous ages reported by Maruyama and Ueda
(1975) and significantly older than the zircon rim ages.

5. Discussion

5.1. Significance within the ‘proto-Japan’ scenario

The geological nature of Early Paleozoic subduction zone metamor-
phism in proto-Japan is poorly understood due to the paucity of Early
Fig. 8. (a)_Summary of geochronological data for metamorphic/ metasomatic and igneous ro
Tsujimori &Harlow, 2012 and Tsujimori, 2017); additional data includes Ichiyama et al. (2020)
of Late Paleozoic detrital zircons from sedimentary (andmetasedimentary) rocks from the Cath
et al., 2015), Northeast Japan [NEJ] (Isozaki et al., 2014) are also shown. Abbreviations ofminera
Gb: gabbroic rocks; Gr, granitic rocks; BS, blueschist facies; EA, epidote-amphibolite facies; EC
reconstruction showing the location of South China (SC) and North China [NC] Cratons (modifi
(Kitomyo). Note that the location of the Paleozoic Japanese arc has been also suggested in paleog
pressure metamorphic rocks (Tsujimori & Ernst, 2014) are also shown.
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Paleozoic HP metamorphic rocks with robust evidence of ‘cold’ paleo-
geotherm. The occurrence of jadeitite associated with serpentinite de-
rived from the Paleozoic ophiolite and serpentinite mélange of the
Hida-Gaien and theOeyamaBelt suggests an Early Paleozoic subduction
initiation (Tsujimori, 2017; Tsujimori & Harlow, 2017). Early Paleozoic
kyanite- and paragonite-bearing metacumulates (Tsujimori et al.,
2000; Tsujimori & Liou, 2004) also support Early Paleozoic subduction
zone metamorphism. On the other hand, no Early Paleozoic blueschist-
facies mineral assemblage has been confirmed yet (Ichiyama, Koshiba,
Ito, & Tamura, 2020; Tsujimori, 2010; Tsujimori & Itaya, 1999; Tsujimori
& Liou, 2004).

Does the Kitomyo Schist provide a clue for the first generation of
subduction zone along the ‘proto-Japan’? The youngest detrital zircons
inmetasedimentary rocks of Pacific-typeHP belt can constrain themax-
imum depositional age of trench-fill sediments (e.g., Aoki et al., 2011).
Our zircon geochronology found its youngest cluster of detrital zircons
at ~440 Ma. Early Paleozoic calc-alkaline granitoids with zircon U–Pb
ages of ~445–435 Ma are sporadically found as blocks in the
Kurosegawa Belt (e.g., Aitchison, Hada, Ireland, & Yoshikura, 1996;
Aoki et al., 2015). Recently, a wide distribution of the Early Paleozoic
calc-alkaline granitoids has been confirmed in the Cathaysia Block of
the South China Craton (e.g., Liu et al., 2014; Ou et al., 2019; Shu et al.,
2014; Wang et al., 2011). In the Kurosegawa Belt of Kyushu, a small ex-
posure of garnet-bearing granulite and amphibolite yield zircon U–Pb
ages of 453–440 Ma (Osanai et al., 2014). These calc-alkaline magmatic
activities and granulite-facies metamorphic rocks would have formed
cks from the Hida-Gaien, Oeyama, Renge and Kurosegawa Belts of Japan (modified after
and Yoshida et al. (2020). Nameswith ‘*’ represent composite geotectonic units. Age ranges
aysia Block of South China Craton [SC] (Hu et al., 2012), the YeongnamMassif [YN] (Cheong
ls, rocks, andmetamorphic facies: Zrn, zircon; PhPh, phengite;Hbl, hornblendic amphibole;
, eclogite facies, AM, amphibolite facies; GR, granulite facies. (b) Early Carboniferous plate
ed after Young et al., 2019), ‘Greater South China’ (Isozaki, 2019) and the Kitomyo Schist
eographical reconstructions byCocks and Cocks and Torsvik, 2012.Major localities of high-
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concomitantly to the first generation of ‘proto-Japan’ arc crust
(e.g., Isozaki, 2019). Considering regional geological context, we postu-
lated that ~445–435Ma granites formed part of the arc-crust source for
the ~440 Ma detrital zircons in pelitic schist of the Kitomyo Schist. The
~1.5 Ga, ~1.8 Ga and ~ 2.4 Ga detrital grains in KTM08 might have de-
rived from the cratonic blocks or inherited grains of the ~445–435 Ma
arc crust.

Determining metamorphic ages using zircons in low-temperature
metamorphic rocks is always challenging due to the limited zircon
growth under such conditions (e.g., Hay & Dempster, 2009). As our
case has shown, metamorphic overgrowths are volumetrically too
small for analyses. However successful spot analyses revealed the
timing of metamorphic overgrowths as young as ~360Ma (Fig. 8). Con-
sidering the inferred P–T trajectory of the Kitomyo Schist, metamorphic
zircon overgrowth can be expected at the peak epidote-amphibolite
condition rather than greenschist-facies overprinting. We interpret the
rims ages represent a timing of epidote-amphibolite facies metamor-
phism of the Kitomyo Schist, in which the assemblage barroisitic am-
phibolite + rutile was stable. The ~360 Ma HP intermediate-type
metamorphism is coeval with the timing of HP metamorphism of the
Renge Metamorphic Rocks as defined by zircon U–Pb ages (Tsujimori,
2010; Yoshida, Taguchi, Ueda, Horie, & Satish-Kumar, 2020). Then
why the age is significantly younger than new phengite K–Ar age?

K–Ar system dating (including Ar/Ar) has been routinely used to de-
termine the cooling ages of HPmetamorphic rocks. However, it has been
also known chronological discrepancy due to the excess 40Ar trapped in
Table 1
Rappresentative SEM–EDS analyses for the Kitomyo Schist. Abbreviation: Grt, garnet; Ph, phen

KTM08 KTM1

Grt (rim) Grt (core) Ph Ep Bar

SiO2 37.57 37.61 49.49 38.23 50.71
TiO2 0.09 0.27 0.35 0.16 0.11
Al2O3 20.27 20.5 26.95 25.4 6.68
Cr2O3 0.13 0.06 0.22
Fe2O3

T 10.97
FeOT 30.19 18.70 4.26 17.69
MnO 1.39 11.53 0.42 0.20
MgO 1.30 0.66 2.82 0.08 12.48
CaO 8.51 10.76 0.09 23.09 8.8
Na2O 0.69 0.12 3.11
K2O 10.25 0.06 0.18
Total 99.32 100.03 95.03 98.59 100.18

O= 12 12 11 12.5 23
Si 3.034 3.013 3.353 2.997 7.134
Ti 0.005 0.016 0.018 0.009 0.012
Al 1.929 1.936 2.152 2.347 1.108
Cr 0.000 0.000 0.007 0.004 0.024
Fe3+ 0.647 1.043
Fe2+ 2.039 1.253 0.241 1.038
Mn 0.095 0.782 0.000 0.028 0.024
Mg 0.156 0.079 0.285 0.009 2.617
Ca 0.736 0.924 0.007 1.940 1.326
Na 0.000 0.000 0.091 0.018 0.848
K 0.000 0.000 0.886 0.006 0.032
Total 7.996 8.003 7.038 8.006 15.207

[B]Na 0.67
Mg# 0.07 0.06 0.54 0.72
Xalm 0.67 0.41
Xspssps 0.03 0.26
Xgrs 0.24 0.30
Xpyr 0.05 0.03

Fe2O3
T = total Fe as Fe2O3; FeOT = total Fe as FeO

Mg# = Mg/(Mg + Fe2+) atomic ratio
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white micas (e.g., Itaya et al., 2011; Itaya & Tsujimori, 2015). Phengite
K–Ar ages significantly older than zircon U–Pb ages have been well
known in the eclogite-facies meta sedimentary rocks associated with
meta-peridotite in the Sambagawa Belt (Itaya & Tsujimori, 2015). An
older Cr-bearing phengite K–Ar age was also confirmed in metaso-
matized ultramafic rocks of the Renge Belt (Tsujimori & Itaya, 1999).
Considering mantle materials have extreme 40Ar/36Ar ratio (e.g.
Kaneoka & Takaoka, 1980), it is highly possible that the significantly
older phengite age is due to excess 40Ar derived from the surrounding
ultramafic rocks (e.g., Itaya & Tsujimori, 2015). Another possibility
would be the detrital origin of white mica. If the closure temperature
is high as ~600 °C (e.g., Gozu, Yagi, Thanh, Itaya, & Compagnoni, 2016;
Itaya, 2020), the presence of older detrital mica can result in the old
age. However, moderate to high-Si feature (3.3–3.6 a.p.f.u.) of the
phengite of the Kitomyo Schist exclude the possibility.

Recently Yang, Santosh, Maruyama, and Nakagawa (2016) and Hu
et al. (2017) conducted zircon U–Pb geochronology of blueschist,
rodingites and host serpentinites in the Kurosegawa Belt near Kochi
City. Yang et al. (2016) found 505±3Maand 503±3Mamagmatic zir-
cons inherited in a low-grade blueschist; Osanai et al. (2014) has also
dated magmatic zircons inherited in a Late Paleozoic blueschist-facies
metagabbro and found 493 ± 4.9 Ma. Hu et al. (2017) found a wide
age range from 51 Ma to 1.58 Ga in rodingite samples: 197 ± 5 Ma
(n = 5), 262 ± 2 Ma (n = 4), 278 ± 9 Ma (n = 3), 294 ± 6 Ma (n =
2), 315 ± 11 Ma (n = 3), 811 ± 11 Ma (n = 4). They also confirmed
a wide age range from 62 Ma to 2.53 Ga with clusters of 379 ± 15 Ma
gite; Ep, epidote; Bar, barroisitic amphibole; Chl, chlorite.

1

Bar Act Act Ep Chl Ph

51.92 53.13 54.64 37.05 28.11 53.91
0.21 0.01 0.88 0.07

6.87 2.70 1.07 22.13 17.87 21.85
0.32 0.31 0.47 0.10 0.18 0.39

15.80
15.82 11.87 10.81 20.39 4.69
0.41 0.50 0.35 0.48 0.33
12.78 15.91 16.20 19.93 4.92
9.19 10.86 11.21 21.89 0.31 0.03
2.79 1.16 0.75 0.01
0.12 0.16 0.16 10.64
100.22 96.81 95.66 97.46 88.00 96.51

23 23 23 12.5 28 11
7.266 7.608 7.914 2.987 5.757 3.592
0.000 0.023 0.000 0.001 0.136 0.004
1.133 0.456 0.183 2.103 4.313 1.716
0.035 0.035 0.054 0.006 0.029 0.021
0.766 0.564 0.217 0.959
1.085 0.857 1.092 3.492 0.261
0.049 0.061 0.043 0.033 0.057 0.000
2.666 3.396 3.498 0.000 6.084 0.489
1.378 1.666 1.740 1.891 0.068 0.002
0.757 0.322 0.211 0.000 0.000 0.001
0.021 0.029 0.030 0.000 0.000 0.904
15.156 15.017 14.980 7.979 19.936 6.989

0.62 0.33 0.26
0.71 0.80 0.76 0.64 0.65



Table 2
Bulk-rockmajor- and trace-element concentra-
tions of the sample KTM11.

wt%

SiO2 51.75
TiO2 0.78
Al2O3 9.63
FeOT 12.17
MnO 0.24
MgO 11.30
CaO 5.27
Na2O 1.81
K2O 1.09
P2O5 0.09
LOI 4.73

Total 98.86

μg·g−1

Rb 20
Ba 184
Th 0.78
U 0.29
Nb 5.1
Ta 0.36
La 5.7
Ce 12.5
Pr 1.68
Sr 31
Nd 7.55
Zr 49
Hf 1.3
Sm 2.33
Eu 0.313
Gd 3.35
Tb 0.59
Dy 3.87
Ho 0.86
Y 23.8
Er 2.59
Tm 0.376
Yb 2.48
Lu 0.403
Ni 450
Sc 28
Cr 830
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(n = 10), 467 ± 3 Ma (n = 5) and 488 ± 3 Ma (n = 10) in a
serpentinite sample. Although the presence of Mesozoic to Paleogene
zircons in the serpentinite of Paleozoic geotectonic unit suggests multi-
ple hydrothermal zircon growth in serpentinite and/or neotectonic
mingling of the serpentinite and younger strata. Probablymore detailed
zircon geochronology for the mélange-matrix serpentinite is required
than that documented in previous studies. Nevertheless, some Late Pa-
leozoic zirconsmight have related to the Late Paleozoic subduction zone
metamorphism that is recorded in the Renge Metamorphic Rocks and
their equivalents in the Kurosegawa Belt (Fig. 8a).

5.2. Tectonic implications for East Asia

Where does the late Paleozoic oceanic subduction zone correlate
with petrotectonic units in East Asia? Ernst, Tsujimori, Zhang, and Liou
(2007) has considered the Permo-Triassic Tongbai–Dabie–Sulu-
Imjingang–Gyeonggi–Renge–Suo–Sikhote-Alin Orogenic Belt along the
paleo-Pacific edge of cratonic Asia. The orogen is characterized by the
multiple events involving accretion of outboard oceanic arcs +
microcontinental fragments against the East Asian margin at
~320–210 Ma, including the deeply subducted sector like the Sulu–
Dabie ultrahigh-pressure Belt. However, during the last decade growing
evidence supports the ‘proto-Japan’ plate convergence at the eastern
margin of the Cathaysia Blocks of the South China Craton (e.g., Cocks
9

and Cocks and Torsvik, 2012; Isozaki, Aoki, Sakata, & Hirata, 2014;
Isozaki et al., 2017; Isozaki, 2019) (Fig. 8b). Recent zircon geochronol-
ogy re-approved the classic idea of Isozaki (1997) that the ‘proto-
Japan’was formed at an oceanic subduction zone between the paleo Pa-
cific plate and South China Craton. Moreover Isozaki (2019) has pro-
posed the ‘Greater South China’; this would consist of an
amalgamated continental block that extended from the Yangtze plus
Cathaysia Blocks of the South China Craton, passing through Korean
Peninsula to the Bureya, Jiamusi, and Khanka Blocks of Sikhote-Alin
(Primorye, Russia). However, the exposure of the Late Paleozoic HP
metamorphic rocks (Renge metamorphic rocks and their equivalents)
with ~360–280Ma is limited only to Japan, and their eastern orwestern
counterparts are missing in either Cathaysia or Sikhote-Alin. So far, all
described blueschists in Sikhote-Alin are younger (~250Ma) and rather
similar to Suo Belt (Ishiwatari & Tsujimori, 2003). Similarly, Devono–
Carboniferous batholiths do not crop out in the eastern margin of the
‘Greater South China’. However, there are abundant ~360–280Ma detri-
tal zircons in Permian and Jurassic sedimentary rocks in eastern part of
the Cathaysia Block (Hu et al., 2012) and ~ 380–340 Ma detrital zircons
in Permian sedimentary rocks in NE Japan (Isozaki et al., 2014). Devo-
nian population (~370 Ma) of detrital zircons are also known in
metasedimentary rocks of the Yeongnam Massif (Cheong, Kim, Kim, &
Cho, 2015). These detrital signatures suggest a relatively extensive re-
gion of granitic magmatism existed along the ‘Great South China’ mar-
gin and was subsequently eroded. Considering the information
together with regional geological context, geological evidence of a ma-
ture arc–trench system during Late Paleozoic oceanic subduction is
widely recorded as detrital zircons. This also suggest that during late
Devonian-early Carboniferous the Greater South China terrane likely
developed a paired belt (c.f. Sanbagawa Belt and Ryoke Bet (including
granitic batholiths):Miyashiro, 1961; Brown, 2010). The surface erosion
and further tectonic events probably erased the Devono–Carboniferous
batholith belt that was paired with the Late Paleozoic HP metamorphic
rocks, such as the Kitomyo Schist.

6. Conclusion

Reappraisal of the oldest high-pressure type schist in Japan confirmed
that the Kitomyo Schist of the Kurosegawa Belt found that the schist is
characterized by the HP intermediate-type, epidote-amphibolite facies
metamorphism. The retrograde P–Tpath suggests that the Kitomyo Schist
had a cooling history similar to the coherent unit of the Sambagawa Belt,
before trapping as a tectonic block. The Kitomyo Schist contains ~440 Ma
detrital magmatic zircon with very thin overgrown rims of ~360 Ma.
Therefore, the schist is not the oldest HP type schist in Japan and rather
comparable to the Late Paleozoic Renge Metamorphic Rocks and their
equivalents in the Kurosegawa Belt. The both Kitomyo Schist and the
Renge Metamorphic Rocks formed at the oceanic subduction zone along
the ‘Greater South China’margin.

Table 1 Representative SEM–EDS analyses of the major constituent
minerals in the Kitomyo Schist. Abbreviation: Grt, garnet; Ph, phengite;
Ep, epidote; Bar, barroisitic amphibole; Chl, chlorite.
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Table 3
Zircon U–Pb isotopic data of zircons from the Kitomyo Schist (KTM08 and KTM11). Spot IDs with ‘L' represent LA-ICPMS data, and with ‘S' represent SHRIMP data. Spot IDs with ‘*’ rep-
resent discordant data. In SHRIMP data, common Pb was corrected using measured 204Pb.

Spot ID 207Pb/235U 2σ 206Pb/238U 2σ 207Pb/206Pb 2σ 207Pb/235U age 2σ 206Pb/238U age 2σ 207Pb/206Pb age 2σ U, μg/g Th, μg/g 232Th/238U

LA-ICPMS
L1#1* 0.606 0.0226 0.0713 0.00230 0.0616 0.00116 481.2 14 444.2 14 661.8 40 244 79.9 0.33
L1#2 0.549 0.0210 0.0719 0.00232 0.0554 0.00114 444.5 14 447.7 14 428.3 46 204 81.3 0.40
L1#3 0.575 0.0214 0.0744 0.00239 0.0561 0.00105 461.5 14 462.4 14 457.3 41 263 98.8 0.38
L1#4* 1.29 0.0465 0.0723 0.00233 0.130 0.00208 842.3 21 449.9 14 2094 28 208 81.5 0.39
L2#1 0.592 0.0291 0.0740 0.00245 0.0580 0.00211 472.0 19 460.5 15 528.5 80 49.0 15.1 0.31
L2#2* 1.02 0.0450 0.0744 0.00246 0.0995 0.00290 714.0 23 462.6 15 1614 54 48.1 14.5 0.30
L2#3* 0.635 0.0309 0.0714 0.00236 0.0645 0.00230 499.4 19 444.8 14 758.5 75 48.2 13.3 0.28
L3#1 3.10 0.130 0.237 0.00288 0.0949 0.00383 1432 32 1369 15 1526 76 453 127 0.28
L3#2* 3.95 0.166 0.252 0.00308 0.114 0.00459 1624 34 1448 16 1859 73 349 150 0.43
L3#3* 0.768 0.107 0.153 0.00305 0.0365 0.00503 578.7 61 915.2 17 7.23 0.932 0.13
L11#1* 1.29 0.080 0.110 0.00460 0.0851 0.00392 840.0 36 670.8 27 1318 89 14.8 10.5 0.71
L11#2* 0.643 0.0280 0.0762 0.00250 0.0613 0.00177 504.4 17 473.2 15 648.6 62 76.2 43.0 0.56
L11#3* 0.847 0.0441 0.0927 0.00310 0.0663 0.00265 623.3 24 571.5 18 815.9 83 28.4 26.4 0.93

SHRIMP
S1#1 8.85 0.2239 0.4288 0.01058 0.1497 0.00084 2323 12 2300 24 2342 4.8 846 51.9 0.061
S1#2 9.99 0.2759 0.4562 0.01191 0.1588 0.00143 2434 13 2423 26 2443 7.6 276 136 0.49
S2#1 0.532 0.0218 0.0716 0.00180 0.0538 0.00175 433.0 7.2 446 5.4 364.6 37 450 275 0.61
S2#2 0.556 0.0182 0.0729 0.00181 0.0553 0.00118 449.1 5.9 453.8 5.4 425.1 24 551 532 0.97
S3#1 0.415 0.0425 0.0578 0.00220 0.0521 0.00495 352.5 15 362.0 6.7 290.3 109 196 86.9 0.44
S4#1 0.559 0.0294 0.0696 0.00220 0.0583 0.00244 451.1 10 433.6 6.6 541.8 46 694 307 0.44
S5#1 0.547 0.0166 0.0699 0.00170 0.0567 0.00104 442.8 5.5 435.6 5.1 480.1 20 1051 552 0.52
S5#2 0.583 0.0200 0.0756 0.00188 0.0559 0.00132 466.4 6.4 470.0 5.6 448.5 26 581 281 0.48
S6#1 0.521 0.0320 0.0698 0.00193 0.0541 0.00297 425.7 11 435.0 5.8 375.5 62 162 76.4 0.47
S6#2* 0.496 0.0443 0.0716 0.00200 0.0502 0.00427 408.9 15 446.1 6.0 204.4 99 170 152 0.89
S7#1 0.480 0.0194 0.0625 0.00153 0.0557 0.00178 398.1 6.6 390.6 4.7 441.8 36 824 608 0.74
S8#1* 3.608 0.1351 0.264 0.00574 0.0993 0.00302 1551 15 1508 15 1611 28 132 81.5 0.62
S8#2* 2.561 0.0478 0.210 0.00336 0.0884 0.00085 1290 6.8 1230 9.0 1391 9.2 118 34.9 0.30
S9#1 0.531 0.0227 0.0697 0.00132 0.0552 0.00212 432.3 7.5 434.6 4.0 419.8 43 99.9 54.4 0.54
S9#2 0.531 0.0433 0.0727 0.00143 0.0530 0.00419 432.6 14 452.2 4.3 329.8 90 464 143 0.31

Table 4
Phengite K–Ar age of pelitic schist (KTM08) of the Kitomyo Schist.

K, wt% Rad. 40Ar, 10−8 cc
STP/g

K–Ar age,
Ma

Non-rad.
40Ar, %

KTM08
phnegite

8.139
± 0.163

14,140.7 ± 134.5 400.2
± 7.9

0.6
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