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A series of collisions among most of the continental fragments between 2.1 Ga and 1.8 Ga culminated in the
assembly of the Columbia supercontinent. Vestiges of reworked Northern Indian Continental Margin, involved in
the Columbia supercontinent assembly, are preserved and known as the ‘Paleoproterozoic high-grade metapelitic
gneisses in the Askot Klippe’ of NW Lesser Himalaya. We report new whole-rock geochemistry, inverse and
forward geothermobarometric modeling, isochemical phase diagram modeling, and U-Pb zircon dating of
metapelitic schists and gneisses to decode the multiple metamorphic histories in Lesser Himalayan fold-thrust.
We identify two metamorphic events that mark the Columbia Supercontinent assembly’s accretion phases: an
earlier ca. 1.85 Ga age related to the first metamorphic episode and a second age of ca. 1.62 Ga associated with
the youngest reported collisional event related to subduction followed by accretion of crust and attendant crustal
anatexis. The earlier event reached upper green-schist facies metamorphism during which garnet cores crys-
tallized, whereas the second event indicates amphibolite-granulite peak metamorphic conditions. Our results
show that the amalgamation of Columbia persisted until at least ca. 1.62 Ga in the northwestern Lesser Himalaya,
indicating tectonic continuity between the northern Indian continental margin, the Aravalli-Delhi Mobile Belt,
and the Eastern Cathaysia Block—key elements in the final Paleoproterozoic assembly of the Columbia
supercontinent.

1. Introduction breakup have been tentatively linked to major geological processes,

including sea-level fluctuations, changes in biogeochemical cycles, shifts

The concept that Earth’s continents cyclically assemble into larger-
scale continents termed supercontinents is increasingly accepted in the
Earth Sciences community. Yet, Pangea is the only supercontinent for
which accurate reconstructions exist, with first-order constraints on its
configuration (e.g., Mitchell et al., 2012; Ernst et al., 2013; Nance and
Murphy, 2013; Stampfli et al., 2013; Pastor-Galan, 2022). Superconti-
nents are generally conceived as rigid super-plates, characterized by
minimal internal tectonic activity, limited interaction between the
lithosphere and the underlying mantle (e.g., Rogers and Santosh, 2009;
Pastor-Galan et al., 2019). Cycles of supercontinent assembly and

* Corresponding author.
E-mail address: birajageology@gmail.com (B.P. Das).

https://doi.org/10.1016/j.precamres.2026.108038

in global climate, variations in continental margin sedimentation, the
creation of large igneous provinces, deep mantle convection, outer core
dynamics, and alterations in Earth’s magnetic field (Worsley et al.,
1985; Nance and Murphy, 1994; Nance, 2022; Martin et al., 2024).
One of the most debated ancient supercontinents is Columbia, also
known as Nuna (see Hou et al., 2008; Zhang et al., 2012; Meert, 2014 for
a discussion on supercontinent “branding™), initially proposed based on
the widespread occurrences of 2.1-1.8 Ga orogenic belts (e.g., Rogers
and Santosh, 2002; Zhao et al., 2004; Meert and Santosh, 2017; Xia and
Xu, 2019). The assembly attained the maximum weldment at ~1.8 Ga
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followed by protracted subduction-related outgrowth through several
accretionary orogens along the margins of the continents at ~1.8-1.5 Ga
(Zhao et al., 2004). After a prolonged subduction-accretion process,
Columbia started to rift along its margin at ~1.6-1.4 Ga (Rogers and
Santosh, 2002; Zhao et al., 2004). Most reconstructions suggest that
Columbia incorporated nearly all of the existing Earth’s continental
blocks (Wilson, 1963; Nance et al., 1988; Rogers, 2000; Rogers and
Santosh, 2002; Zhao et al., 2002; Hou et al., 2008). Zhao et al., (2002)
identified widespread ‘anorogenic magmatism’ between 1.4 and 1.2 Ga,
which they interpreted as the onset of Columbia’s breakup. According to
Rogers and Santosh (2002), Columbia supercontinent incorporated
nearly all earth’s continental cratonic fragments between 1.9 Ga and 1.5
Ga, having the Indian Continental Block (ICB) positioned close to East
Antarctica to the south and North America (Laurentia) to the east,
forming a cohesive unit. Zhao et al., (2004) configured the Columbia
supercontinent by placing the ICB between the East Antarctica Craton to
the south and the North China Craton to the north with ~1.8 Ga Central
Indian Tectonic Zone (CITZ) as an extension of the ~1.85 Ga Trans-
North China Orogen, facilitating the linkage of these blocks during Co-
lumbia's assembly. Hou et al. (2008) proposed a configuration model
highlighting ~1.85 Ga giant radiating mafic dyke swarm that unites the
North China Craton, Indian Craton, and Laurentia (Canadian Shield),
with a stable core including Laurentia, West Australia, and East
Antarctica. This clearly contradicts with earlier models like Zhao et al.,
(2002, 2004), which resemble Rodinia configurations. Johansson
(2009) challenged the incorporation of the ICB in Columbia, renamed
the supercontinent as “Midgardia” which focuses on a core assemblage
of cratons without involvement of the position of ICB. Yu et al., (2012)
modified the framework of Zhao et al., (2004) by incorporating the
Cathaysia Block (part of South China) directly north of the ICB, with the
Lesser Himalaya in northwest India connected to the South Korean
Peninsula (SKP). Pisarevsky et al., (2013) proposed a paleogeographic
reconstruction of Columbia, juxtaposing the ICB against the southern
part of Baltica to form a single proto-craton, showing stable continental
configurations by around 1.65-1.58 Ga. Grenholm et al., (2019)
depicted that the Columbia assembly configuration started with the
coalescence of the Atlantic Continental Block with the Fennoscandian
continental blocks and the Siberian Craton at ca. 1.9-1.8 Ga. More
recent evidence indicates that Columbia may not have fully formed until
around 1.6 Ga (Kirscher et al., 2021; Volante et al., 2022); prolonging its
originally proposed lifespan by ~200 Ma.

Columbia’s exact configuration and duration still remain uncertain
because of the uncertainties in dating key geological events. Although,
paleomagnetic data remain as primary data limitations, geological in-
dicators, including orogenic belts having Proterozoic rock records pro-
vide insufficient clues subjected to interpretive debates and biases.
These features suggest global-scale collisions, but their interconnected-
ness in a single supercontinent model remains contested. Erosion, sub-
duction, and metamorphism have destroyed much of the ancient record,
further hindering definitive mappings. Meert (2014) even proposed that
the similarities between reconstructions of Columbia and Rodinia may
reflect cognitive biases or imply that plate tectonics processes operated
differently in the deep past. After two decades of research, significant
gaps remain regarding Columbia’s configuration, which highlights the
critical need for further geochronologic, and geological data from across
all Columbia fragments.

The Northern Indian Continental Margin (NICM) represents the
northernmost extent of the Paleoproterozoic Indian Shield (Hinsbergen
et al.,, 2012) and contains widespread evidence of Proterozoic granit-
oids, mafic volcanics, and volcanic arc-related magmatic rocks (Sharma
and Rashid, 2001; Miller et al., 2000; Richards et al., 2005; Kohn et al.,
2010; Mandal et al., 2016; Phukon et al., 2018; Sen et al., 2019;
Mukherjee et al., 2019; Mukherjee et al., 2024; Pandey, 2022; Patel
et al., 2025). Parts of the NICM thrust southwards during the orogeny
presently occur as metamorphic nappes and klippen in the Lesser
Himalaya preserve evidence of pre-Himalayan metamorphism, with
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metamorphic grades ranging from low-grade greenschist facies to upper
amphibolite-granulite transition facies in Lesser Himalayan nappes
(Joshi and Singh, 1990; Joshi et al., 1994; Bhargava and Bassi, 1994;
Pant et al., 2006; Joshi and Tiwari, 2004; 2007; 2009; Joshi et al., 2019;
Das et al., 2019; Das et al., 2021; Mukherjee et al., 2024; Joshi et al.,
2025). However, metamorphic and geochronological constraints remain
sparse for the northernmost sectors of the Indian Shield, except for the
age of 1891 + 12.82 Ma, for the metapelitic gneisses of Baijnath Klippe,
NW Lesser Himalaya (Joshi et al., 2025), limiting our ability to robustly
link the Northwestern Lesser Himalaya with Columbia (see Hifzurrah-
man et al., 2021; Mukherjee et al., 2024; Joshi et al., 2025) and their
relation with the surrounding continental blocks (cf. Rogers and San-
tosh, 2002; Zhao et al., 2002; 2004; Teixeira et al., 2007; Hou et al.,
2008; Johansson, 2009; Pisarevsky et al., 2013; Reis et al., 2013; Wang
et al., 2016; Grenholm et al., 2019; Terentiev and Santosh, 2020).

In this broader context, the Lesser Himalaya, forming a major
component of the NICM, represents a critical but underexplored archive
for evaluating the role of ICB in Columbia’s assembly. Being triggered by
the young Tertiary collision, Lesser Himalayan nappes and klippen hold
the key to preserve the pre-Himalayan tectono-metamorphic signatures
because of its magmatic and meta-volcanic rock association with the
Paleoproterozoic NICM of Indian Craton (Kohn et al., 2010; Mukherjee
et al., 2019; Yang et al., 2021; Patel et al., 2025). Furthermore, Lesser
Himalaya marks an integral component of Indian Shield which may
have received sediment supply from the Proterozoic Aravalli-
Bundelkhand Craton and subsequently deformed and metamorphosed
(Kaur et al., 2013).

The pre-Himalayan polymetamorphic histories of Lesser and High
Himalayan sequences span from the Paleoproterozoic to the Paleozoic
era (Joshi and Singh, 1990; Arita et al., 1990; Sorkhabi and Stump,
1993; Joshi et al., 1994; Paudel and Arita, 2000; Joshi and Tiwari, 2007,
2009; Lihter et al., 2022). However, robust chronological constraints for
successive metamorphic events, particularly those of Paleoproterozoic
age, remain limited. During the 2.1-1.8 Ga global-scale orogeny, the
Indian Shield was an integral part of the Columbia supercontinent
(Meert, 2012; Wang et al., 2023). Paleoproterozoic magmatic rocks
present in the Himalayan fold-thrust belt demonstrate connections with
the Aravalli-Delhi Mobile Belt and the Columbia supercontinent (Kaur
et al., 2013, 2021; Phukon et al., 2018; Phukon, 2022; Hifzurrahman
et al., 2021, Patel et al., 2025).

Understanding the tectonic evolution of NICM is crucial for eluci-
dating the assembly of the Columbia supercontinent in South Asia. De-
bates persist regarding (i) the nature of NICM as active margin (based on
the presence of subduction-related Proterozoic granitoids along the
Himalayan belt, Phukon, 2022; Pandey, 2022) versus passive margin
(based on the Lesser Himalayan rocks in the Central Himalaya, such as
those in Nepal and parts of India including Nawakot Group of formations
such as the Proterozoic Kuncha turbidites of 1900 Ma, Fag fog quartzites
of 1770-1790 Ma, and Syangja volcano-sedimentary sequence of 1750
Ma, Brookfield, 1993; Myrow et al., 2003) (ii) its paleogeographic cor-
relations (Phukon, 2022; Pandey, 2022; Rogers and Santosh, 2002; Zhao
et al., 2004) and uncertainties surrounding the subduction dynamics of
the proto-NICM, including whether it involved continuous subduction,
double subduction, or the accretion of multiple island arcs, and its
paleogeographic correlations with East Antarctica, the North China
Craton, and other Gondwanan elements (Meert, 2012), (iii) the
connection between the Central Indian Tectonic Zone and Columbia, as
well as NICM (Vansutre and Hari, 2010; Rekha and Bhattacharya, 2014;
Bhowmik, 2019; Chattopadhyay et al., 2020; Chakrabarty et al. 2023;
Sethy et al., 2025), (iv) the obscurities of Proterozoic NICM features by
the Himalayan orogeny, thus complicating tectonic reconstructions
from the Columbia era (Searle, 1996), and (v) the timing and tectonic
implications of Proterozoic crustal extension events in the NICM (Mishra
and Ravi Kumar, 2014; Sen et al., 2019; Phukon, 2022), which are
critical for understanding its role in Columbia’s assembly.

Proposed connections between NICM, Lesser Himalaya, Aravalli
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Craton, and the Cathaysia Block are based on similarities in their
metamorphic histories as well as basin evolution (Auden, 1935; Gansser,
1964; Valdiya, 1976; Bhargava, 2000; Richards et al., 2005; McQuarrie
etal., 2008; Long et al., 2011; Spencer et al., 2012; Yu et al., 2012; Wang
et al., 2018, 2019 and 2021; Cawood et al., 2020). The Almora Nappe
and associated klippen of Kumaun provide significant insights into these
relationships (Valdiya, 1980). Therefore, investigating the Lesser
Himalaya is essential not only for elucidating the Proterozoic geo-
dynamic evolution of the NICM, but also for establishing paleogeo-
graphic spatial and temporal linkages between Indian Craton and other
Columbia fragments. By examining these ancient metamorphic records,
we can better constrain the timing, processes, and thermal regimes that
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governed continental accretion and stabilization during Columbia’s
formation.

In this paper, we investigate high-grade metapelitic rocks from the
Askot Klippe (Lesser Himalaya, India) to unravel their polymetamorphic
tectono-thermal evolution and assess their significance within the NICM
in the context of Columbia supercontinent assembly. We present new
petrological and U-Pb zircon geochronological data to constrain their
Paleoproterozoic metamorphic history. Our approach integrates con-
ventional and high-resolution thermobarometry, isochemical phase di-
agram modelling, together with detailed textural and mineral
assemblage analyses, and whole-rock geochemistry, to reconstruct their
pressure-temperature (P-T) evolution. The resulting P-T path is
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Fig. 1. Simplified tectonic diagram of Askot Klippe. (a) Regional geological map of the eastern Kumaun Himalaya. Rectangular box shows the location of the study
area (modified after Valdiya 1980). XY is the section line for the cross section shown in Fig. 2a, b. Simplified geological map of the Askot Klippe showing different
thrust contacts and the rock types (modified after Das et al. 2019).
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compared with those from other Himalayan regions to evaluate regional
metamorphic patterns. Finally, we explore tectono-metamorphic and
geochronological correlations between the Askot Klippe and other
Paleoproterozoic terranes of the NICM, providing new insights into their
potential paleogeographic linkages during Columbia’s assembly.

2. Geological background
2.1. Regional geology and tectonic setting

As a consequence of the crustal shortening during the Cenozoic Hi-
malayan Orogeny (Molnar and Tapponier, 1975; Srivastava and Mitra,
1994; Patzelt et al., 1996; Joshi, 1999; Searle, 1986; Joshi et al., 2019),
the lowermost units of the High Himalaya were thrust southwards over
the Lesser Himalayan sedimentary rocks and the remnants of this large
thrust sheet occur as nappes and klippen strewn all over the Himalayan
strike. One of these klippen, the Askot Klippe, comprises Ramgarh Group
as its lithotectonic base and the overthrust Almora Group as its meta-
pelitic cover (refer Fig. 1a, 1b of present work, see Das et al., 2019; Das
et al., 2021 for detail information therein). The Almora Group is
correlated with the Munsiari Group of the High Himalayan Meta-
morphics following Valdiya (1980). The rocks of both the Almora and
Munsiari Group are sequences comprising interbanded metapelites and
meta-psammites with marked similarity in the tectonic and meta-
morphic textural-mineralogical details.

The Almora Group and its equivalent klippen including the Askot
Klippe comprise medium-to-high grade metapelitic rocks and the degree
of shearing decreases up section towards the central part (Das et al.,
2019). The lithotectonic setting of the klippe is notably similar to the
Almora Nappe (Joshi, 1999; Joshi and Tiwari, 2007, 2009). The pro-
grade sequence in the Almora Group rocks in the Askot Klippe comprises
low-to-high-grade metapelitic schists and gneisses. The metapelites are
interspersed with quartzite bands of varying dimensions and the meta-
morphosed pelite-psammite sequence shows notable similarity with the
analogous metamorphosed rock sequence in the Almora Nappe.

2.2. Field observation and sample descriptions

We carried out detailed field investigations, including lithological
and structural mapping, of the Almora Group metapelites in the Askot
Klippe. We took several traverses from the base to the central part of the
klippe across the strike of the klippe. Our field investigations revealed
four distinct prograde metamorphic zones, starting with chlorite-biotite
bearing metapelitic schists of greenschist facies at the base of the klippe
to progressively higher-grade assemblages of garnet-sillimanite-K-
feldspar-bearing metapelitic gneisses that reached upper amphibolite
to granulite facies transition conditions (see Supplementary Table S1 for
sample locations). We identified four metamorphic zones and isograds
with antiformal dispositions (Fig. 2a, 2b), namely, the chlorite-biotite
zone (sample DL-12B, Fig. 3a), garnet-biotite zone (samples DL-12A
and K2A, Fig. 3b), kyanite-biotite zone (samples K2 and DL-12,
Fig. 3c), and K-feldspar-sillimanite zone (samples ASK-79 and AS-8,
Fig. 3d). Reaction isograds, based on petrologically constrained mineral
assemblages and metamorphic reactions, separate each zone.

The chlorite-biotite zone is characterized by the phyllites and biotite
schists of the Almora Group. Phyllites with greenish appearance crop out
around the Didihat region in the NW of Askot town. Chlorite and sericite
are the predominant minerals in phyllites. Muscovite, chlorite, brown
biotite and quartz are among the major phases and the phyllites contain
numerous quartz veins that are observed in the Didihat-Ogla traverse.
The garnet — biotite zone characterized by the garnet-mica schists is
exposed between Didihat and Askot. Pelitic mica-schists (Fig. 3a, 3b)
exposed in the peripheral parts of the Almora Group are followed
upsection by kyanite-garnet-mica schists (Fig. 3c) and garnet-
sillimanite-K-Feldspar gneisses (Fig. 3d) in the nappe due to folding.
The presence of kyanite and sillimanite is not abundant, likely due to
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Fig. 2. (a) Isograd map of the area showing the disposition of different meta-
morphic zones (modified after Joshi et al. 2018); (b) Enlarged schematic section
of the Askot Klippe showing the disposition of metamorphic zones and corre-
sponding rock types in an antiformal disposition. Colours and symbols are taken
from Fig. 2a.

compositional factors in the parent rocks. These garnet-kyanite bearing
schists are occasionally traversed by quartz veins. At the highest meta-
morphic grades, the kyanite schists are succeeded by the metapelitic
gneisses of the sillimanite-K-feldspar zone, occasionally through mig-
matites, which show alternate lighter, irregular, vein-like bands of felsic
materials as leucosomes and the dark, tightly folded layers as melano-
some (Fig. 3e), which led to the development of the gneisses by prograde
metamorphism that underwent partial melting at peak conditions.

3. Methods and techniques

Thin sections of metapelitic schists and gneisses were cut perpen-
dicular to the dominant foliation and further polished for both the
petrological studies and probe analysis to capture the cross-sectional
views of the metamorphic reaction textures and mineral parageneses.
The mineral chemistry of representative minerals was carried out using
the Electron Probe Micro Analyzer (EPMA) CAMECA SX-Five at the
Centre of Advanced Study in Geology, Institute of Science, Banaras
Hindu University (see Supplementary Table S2). The garnet crystals
were analyzed by taking rim-to-rim chemical line profiles to distinguish
the core and the rim. Polished thin sections were coated with 20 nm thin
layer of carbon for electron probe micro analyses using the LEICA-EM
ACE200 instrument. The EPMA was operated at a voltage of 15 kV
and filament current of 10nA with a LaB6 source in the electron gun for
the generation of the electron beam. Natural silicate mineral andradite
as internal standard was used to verify positions of crystals (SP1-TAP,
SP2-LiF, SP3-LPET, SP4-TAP and SP5-PC1) with respect to correspond-
ing wavelength dispersive (WD) spectrometers (SP#) in CAMECA SX-
Five instrument. The following X-ray lines were used in the analyses:
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Fig. 3. Field photographs of Almora Group. a. Chlorite-Mica bearing metapelitic schist; b. Garnet-Mica bearing metapelitic schist; c. Kyanite-Mica bearing meta-
pelitic schist; d. Garnet-Sillimanite-K-Feldspar bearing metapelitic gneiss; e. Presence of migmatite showing leucosomes (melt-derived portion) and melanosome

(original metamorphic rock).

F-Ka, Na-Ka, Mg-Ka, Al-Ka, Si-Ka, P-Ka, K-Ka, Cl-Ka, Ca-Ka, Ti-Ka, Cr-
Ka, Mn-Ka, Fe-Ka, Ni-Ka, and Sr-La. Natural mineral standards: apatite,
albite, halite, periclase, peridote, corundum, wollastonite, orthoclase,
rutile, chromite, rhodonite, celestite, barite, hematite and synthetic Ni
metal supplied by CAMECA-AMETEK used for routine calibration and
quantification. Routine calibration, acquisition, quantification and data
processing were carried out using Sx-SAB version 6.1 and SX-Results
software of CAMECA. Elemental mapping was also performed on the
garnet crystals to know the spatial distribution of each element.

Both the metapelitic schists and gneisses of the Almora Group from
the Askot Klippe were selected for bulk analysis using the X-ray Fluo-
rescence (XRF) Spectrometer (Make/Model: Bruker S-8 Tiger) at the
Wadia Institute of Himalayan Geology, Dehradun, India (see Supple-
mentary Table S3). The instrument was operated at a voltage of 20-40
kV. A total of 15 kg of the selected samples are ground into fine powder
to the size consistency of ~200 u. From each powdered sample, only

8-10 g of pressed powder pellets is taken for the final measurement. As
H30 is a major constituent and can’t be measured directly by XRF, hence
1-2 g of each dried rock powder is ignited in alumina crucible at 950°C
for about one hour to get the weight % of HO in the form of Loss on
Ignition (LOI). For measuring the calibration, a range of crystals, namely
GA, G-2, GSP-1, AGV-1, JG-2, JA-2, and DG-H were used as standard
with the analytical accuracy better than 5% for major oxides and the
precision in terms of maximum observed standard deviation on repeated
measurements is always better than 1.5% (Saini et al., 1998).

The possible P-T modeling of a metamorphic terrain can be deduced
by the mineral chemistry of a rock sample by the approach of forward
and inverse thermodynamic modelings (Lanari and Duesterhoeft, 2019).
To obtain precise pressure-temperature (P-T) estimates, it is essential to
analyze fresh garnet crystals exhibiting the largest diameters and
depicting no evidence of chemical weathering or leaching, as these
features preserve pristine chemical zoning and minimize diffusive re-
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equilibration that could obscure the original metamorphic history of
these rocks.

For high-resolution P-T path modeling and conventional geo-
thermobarometry, three representative samples were selected: one
sample from metapelitic schist (DL-12) and two samples from meta-
pelitic gneisses (AS-8 and ASK-79). These samples were chosen because
they contain well-preserved, unweathered garnets with larger diameters
exceeding 1 mm, ensuring reliable garnet P-T path modeling and reac-
tion equilibria calculations; additionally, their mineral assemblages and
bulk compositions align with regional metamorphic gradients, allowing
robust reconstruction of prograde and retrograde paths.

In contrast, for constructing isochemical phase diagrams, a subset of
these samples was used: one sample from metapelitic schist (DL-12) and
the two samples from metapelitic gneisses (AS-8 and ASK-79). This se-
lection was justified by the samples' distinct bulk rock compositions, to
effectively capture the stability fields of peak metamorphic assemblages
(e.g., garnet + biotite + sillimanite + K-Feldspar + cordierite in the
gneisses, and garnet + biotite + kyanite in the schist), as corroborated
by detailed petrographic observations of textural equilibrium and phase
relations.

Isochemical phase diagrams were computed for the measured bulk
rock compositions using Perple_X (version 7.1.1) (Connolly, 2005) for
the model system Nay0-CaO-MnO-K;0-FeO-MgO-Al;03-Si02-H,0-TiO4
(MnNCKFMASHT) to decipher the stability of various phases in the
studied rock types. The CORK fluid equation of state (Holland and
Powell 1991, 1998) was used for the saturated fluid components. The
amount of HyO analyzed in the XRF analysis was used as the ‘loss on
ignition’ (LOI) value for calculations of isochemical phase diagrams. The
solution models of White et al. (2014) adopted for these zones are Bi
(W), Gt (W), Crd (W), Chl (W), Ctd (W), Mica (W), Ilm (WPH), melt (W)
and feldspar (see Supplementary Table S4). T-XH30O phase diagrams
were computed for the measured bulk rock compositions to estimate the
actual water content present in the rock during metamorphism. Modi-
fied phase diagrams were constructed using Effective Bulk Composition
(EBQC) calculated by using the approach of Evans (2004) and Gaidies
et al., (2006) based on the Rayleigh fractionation principle to demon-
strate the effect of fractionation on stability of different phase
assemblages.

In the Zircon U-Pb geochronological technique, zircon grains were
separated from ~7 kg of sample by crushing and sieving up to 250 um
followed by gravity (Holman Wilfley water table), magnetic and heavy
liquid separations. About 70 zircon grains were handpicked under a
binocular microscope and mounted on per-fluoro-alkoxy alkaline (PFA
®) teflon sheet followed by polishing to expose the mid-section. Cath-
odoluminescence (CL) imaging of the zircon grains was carried out using
Zeiss EVO 40 extended pressure (EP) scanning electron microscope
(SEM) at the Department of Geology, Banaras Hindu University, Vara-
nasi, India to study the internal structure and selecting locations for U-
Pb analysis. A multi-collector inductively coupled plasma mass spec-
trometer (MC-ICPMS; Neptune Plus, Thermo Fisher Scientific) with a
193 nm excimer laser ablation system (UV Lase, Model Analyte G2,
Cetec-Photon machine) was used for zircon U-Pb dating at Wadia
Institute of Himalayan Geology, Dehradun, India. Instrumental condi-
tions and analytical procedures were similar to those described by
Mukherjee et al. (2017). Spot diameter of 25 pm, 67.5% laser intensity,
repetition rate of 5 Hz and an energy density of 3.5 J/cm? were applied
for the analysis. Zircon standard Z91500 was used as the primary
standard (Wiedenbeck et al., 1995), and the standard silicate glass NIST
610 was used to optimize the machine. The accuracy was later checked
using the zircon standard Plesovice (Slama et al., 2008) as the external
standard. The standard zircon was analyzed first and then after every 10
unknowns. Isotopic ratios and elemental compositions of zircon were
processed using Iolite software (Paton et al., 2011). Concordia diagrams
and weighted mean age calculation were plotted using Isoplot R
(Vermeesch, 2018). The uncertainties for individual spot analysis are
presented at 20, and intercept ages are also quoted at 20 (95%
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confidence level). The analytical results of zircon U-Pb ages are listed in
Supplementary Table S5.

4. Results
4.1. Reaction textures

4.1.1. Chlorite-biotite zone

The phyllitic schists are characterized by the presence of chlorite,
muscovite, biotite, plagioclase, and quartz. The minerals observed in
this zone are fine-grained and the foliation is defined by the preferred
alignment of chlorites and larger mica flakes (Fig. 4a). The lepidoblasts
of Mg-rich chlorite in this zone follow the major foliation trend. Cross-
cutting muscovites of at least two generations are present (Fig. 4b),
where older generations of muscovite are observed to cut the younger
muscovite flakes at varied angle.

4.1.2. Garnet-biotite zone

The onset of the garnet-biotite zone is marked by the development of
garnets having size range of 500 pm to 1500 um (Fig. 4c) by the reaction
Chlorite + Muscovite + Quartz = Garnet + Biotite + Water. Two gen-
erations of garnet porphyroblasts, namely garnet; and garnet, are
identified. Around the rim of the earlier-formed garnet, there are
numerous quartz inclusions present. Persistent association of garnet
porphyroblasts and biotite flakes characterizes the stable garnet-biotite
association. Small prism-shaped zircon crystals having higher relief are
observed as a pleochroic halo in biotites (Fig. 4d). The instability is
clearly observed in this zone due to the corroded boundary between
garnet and muscovite. A neutral pressure shadow with a crude ‘S’-sha-
ped inclusion trails of quartz is developed around garnet porphyroblasts
(Fig. 4e). A fractured, relict, and resorbed grain of garnet is surrounded
by thin coatings of hematite (Fig. 4f).

4.1.3. Kyanite-biotite zone

This zone is characterized by scattered garnet idioblasts in a matrix
of muscovite, biotite, and chlorite. Kyanite blades having high relief and
upper 1st order interference colour and size range of around 180-220
um (Fig. 5a) occur in close association with biotite flakes likely by the
reaction garnet + muscovite = biotite 4 kyanite + quartz. Here, laths of
muscovite observed in the zone define the major foliation plane.

4.1.4. Sillimanite-K-feldspar zone

This zone is characterized by the presence of garnet cordierite,
sillimanite needle, K-feldspar, muscovite, and biotite. The intergrowth
of plagioclase and K-feldspar shows perthitic texture in this zone
(Fig. 5b). This texture can be treated as the petrographic manifestation
of liquid immiscibility in the studied rock.

The reaction boundaries of muscovite-plagioclase-quartz (Fig. 5c and
5d) are corroded and invariably fuzzy and discolored, which leads to the
reaction of muscovite + plagioclase + quartz = AlSiOs + K-feldspar +
melt (Evans and Guidotti, 1966; Thompson and Algor, 1977; Patino-
Douce and Harris, 1998). The presence of thin sillimanite needles in
association with K-feldspar is inferred to have formed by the above re-
action (Fig. 5e). The cordierite seen around garnet rim (Fig. 5f) is re-
ported for the first time from any of the nappes and klippes of the Lesser
Himalaya.

4.2. Mineral chemistry

Compositional zoning profiles, BSE image and X-ray elemental map
of representative garnet was analyzed by EPMA for both the metapelitic
schists and gneisses of Almora Group (Fig. 6). We took the zoning data of
garnet analyzed by EPMA, where X, is defined by Ca/(Ca + Mg + Fe +
Mn), Xy is defined by Mg/ (Fe + Mg + Ca + Mn), X, is defined by Fe/
(Fe + Mg + Ca + Mn) and Xy, is defined by Mn/(Ca + Mg + Fe + Mn).
The compositional plot of garnet of both metapelitic schists and gneisses
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Fig. 4. (a) Presence of chlorite, biotite, muscovite, albite and quartz and preferred alignment of mica lepidoblasts along the regional foliation plane. Note that the
chlorite, and mica define the regional foliation plane; (b) Presence of two generations of mica, which are observed to cut across each other at varied angle to the
regional foliation plane; (c) Presence of garnet-in-garnet association with numerous inclusions of quartz around earlier garnet rim; (d) Unstable garnet-muscovite
contact. Note the pleochroic halo of zircon in biotite; (e) S-shaped inclusion trail within garnet; (f) Presence of relict and resorbed garnet. Mineral abbreviations
(Grt = Garnet; Pl= Plagioclase; Ms = Muscovite; Bt = Biotite; Qz = Quartz; Chl= Chlorite; Zr = Zircon) are after Whitney and Evans (2010).

shows the profile of Ca, Mg, Mn, and Fe from rim to rim. The zoning
profiles and X-ray elemental maps for samples DL-12 and AS-8, derived
from electron microprobe analyses and mapping, reveal typical growth
zoning patterns. The profiles indicate a single prograde growth episode
with minimal diffusive re-equilibration, preserved due to relatively
rapid burial/exhumation rates during the metamorphism. For the sam-
ple DL-12, the garnet exhibits classic prograde “Christmas tree” zoning,
with a Mn-rich core and Fe-Mg enriched rim. The crystal is sub-
idioblastic (~1-2 mm diameter), with inclusions of quartz, biotite,
and ilmenite concentrated in the core, suggesting nucleation during
early garnet-in isograd conditions. In the compositional profile at 400
pm at the core, there is Low-T nucleation followed by high Mn frac-
tionation from the matrix. From 400 to 600 pm from the core to rim,
temperature increases with Mn depletion in the matrix. From 600 to 800
pm, rise in Xy indicates ‘Mg’ availability from biotite breakdown,
garnet sustains peak equilibrium conditions with matrix. Sharp decrease
in Xmn reflects temperature-dependent partitioning. Xpe and Xy

increases suggesting prograde heating and reaction progress which is
evident by the reaction chlorite + muscovite — biotite + garnet. Xc,
remains low (15-10 mol%) from core to rim, typical for Ca-poor pelites.
Concentric bands show a brighter Xy, core (reddish core) fading to a
dark rim, with Mg intensity increasing outward from darker blue to
brighter blue. Xge is nearly homogeneous (dull yellow to brighter yel-
low). In case of sample AS-8, compositional zoning is similar but more
subdued, with a slightly larger garnet crystal. The compositional profile
at 0 um at the core is attributed to initial growth with slightly lower Mn
than DL-12. The compositional variation from 1000 to 1500 pm across
the core-to-rim section is characterized by a steady garnet growth. The
variation from 1500 to 1700 pm, suggests peak thermal conditions. Xy,
decreases more gradually than in DL-12, attributed to kinetic effects
during the rapid growth of garnet. X¢, shows a weak bell-shaped profile,
which is very common in the metapelitic gneisses of Himalayan fold-
thrust belt (see Joshi and Tiwari, 2009; Das et al., 2019 for detailed
analyses) with minor calc-silicate influence, indicating localized Ca
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Fig. 5. Photomicrographs of sillimanite-K-feldspar zone of the garnet-cordierite-sillimanite-K-feldspar bearing metapelitic gneisses, Almora Group. a. Presence of
kyanite in association with muscovite, quartz, and K- feldspar; b. Presence of micro-perthite showing intergrowth of plagioclase and K- feldspar; c, d. corroded
boundary between muscovite, plagioclase and quartz suggesting disequilibrium conditions between these mineral pairs and initiation of dehydration melting re-
action, muscovite + plagioclase + quartz = K-feldspar + sillimanite + melt; e. Needles of sillimanite in association with K- feldspar; f. Garnet-cordierite association.
Mineral abbreviations (Grt = Garnet; Kfs = K-feldspar; Pl= Plagioclase; Ms = Muscovite; Bt = Biotite; Qz = Quartz; Crd= Cordierite; Chl= Chlorite; Sil= Sillimanite;

Ky = Kyanite) are after Whitney and Evans (2010).

enrichment during exhumation. Similar concentric Xy, depletion (red-
dish yellow core to darker blue rim) in X-ray elemental map of AS-8 with
patchy Xy increase (darker blue core to lighter blue rim) and faint Xc,
compositional variation occurs near the rim. Mn map shows subtle ir-
regularities, reflecting sector zoning, while Xg, is uniform, which con-
firms minimal retrograde diffusion.

4.3. High resolution P-T path using ‘Theriak’ combined with MATLAB
program

The P-T path modeling was computed (Fig. 7) for three representa-
tive samples (DL-12, ASK-79, and AS-8) using the Theriak-Domino
software (De Capitani and Brown, 1987; De Capitani and Petrakakis,
2010) in conjunction with MATLAB program by the automated routine
of Moynihan and Pattison (2013).

The modeling was carried out using bulk rock compositions (See
supplementary Table S3) with the thermodynamic data set of Holland
and Powell (1998) with updated solution models through 2003 and
2011, and selective solution models in the system NayO-CaO-MnO-K;0-
FeO-MgO-Al;03-Si02-H30-TiO; (MnNCKFMASHT). The thermody-
namic assumptions inherent in this approach are the same as Moynihan
and Pattison (2013). Some of the key assumptions made in this modeling
approach are; (1) the local equilibrium conditions of garnet growth,
with mineral assemblages and compositions stable and in equilibrium

with the surrounding matrix at each P-T step of the modeling, (2)
Equivalence of observed and modelled zoning profile of garnet, (3)
100% fractional crystallization of garnet with no resorption, back-
reaction, or internal metasomatism, and equivalence of matrix compo-
sitions with the Effective Bulk Composition (EBC), (4) Assumption of
excess HyO, implying a pure HyO fluid phase in equilibrium with the
rock (fluid-saturated condition), and (5) Exclusion of partial melting,
assuming sub-solidus conditions throughout garnet growth, limiting its
applicability to rocks below wet-solidus. Based on the chemical data, we
assumed the highest Mn content of the garnet as the ‘core’. We took the
largest garnet crystal assuming that the garnet having the largest
dimension would preserve the representative P-T. The purpose of this
modeling is to correspond to the modal garnet end-member composi-
tions from the core-rim transect with the observed garnet end-member
compositions from the modeling to deduce the P-T conditions.

The Theriak P-T path with MATLAB script was run using the EPMA
compositional data of garnet transect and bulk rock compositional data
from XRF to compute appropriate P-T conditions of the rock. The pro-
gram was executed successfully to retrieve the P-T conditions for each
sample. The sample DL-12 yielded a P-T of 0.42 GPa/524°C at the core
and 0.58 GPa/572°C at the rim; sample ASK-79 yielded a P-T of 0.54
GPa/539°C at the core and 0.63 GPa/591°C at the rim; sample AS-8
yielded a P-T of 0.43 GPa/526 °C at the core and 0.63 GPa/566 °C at
the rim (see supplementary Table S6). It is needless to mention here that
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Fig. 6. X-ray elemental map, BSE image and zoning profile of garnets in metapelitic schists (a) and gneisses (b) of the Almora Group. Colour palette: Mg, darker blue
(lower concentration) — lighter blue (higher concentration); Fe, darker yellow (lower concentration) — lighter yellow (higher concentration); Mn, darker yellow
(higher concentration) — blue (lower concentration); Ca, lighter red (higher concentration) — patchy red (lower concentration).

reported P-T conditions from this modeling arise primarily from the
program’s computational methodology, which depends on Gibbs free
energy minimization to derive equilibrium states, based on the model's
assumptions, not rounded or adjusted for uncertainty. Explicitly, typical
uncertainties in this case are around +50°C for temperature and +0.2
GPa for pressure, which can be estimated using methods like Monte
Carlo simulations or error propagation, to reveal the output shift by
small input variations. The measures of uncertainties due to the several
key sources, viz., analytical errors in input data, limitations in thermo-
dynamic databases, approximations in mixing parameters for solid so-
lutions of garnet and biotite, assumptions like perfect equilibrium,

closed/open system behavior, and change in overall bulk composition of
rocks (Palin et al., 2016) cannot be ruled out.

4.4. P-T path by conventional thermobarometry

The temperature and pressure for both the core and rim were
calculated using different thermobarometric models and the P-T were
calculated for the chlorite-biotite zone, garnet-biotite zone, kyanite-
biotite zone, and sillimanite-K-feldspar zone using conventional ther-
mobarometry (Thompson 1976; Holdaway and Lee, 1977; Ferry and
Spear, 1978; Hodges and Spear, 1982; Perchuk et al., 1985; Perchuk and
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Fig. 7. High resolution P-T path of representative samples using Theriak-
Domino in conjunction with MATLAB program. (a) core-rim P-T conditions of
sample no. DL-12; (b) core-rim P-T conditions of sample no. AS-8; (c) core-rim
P-T conditions of sample no. ASK-79.

Lavrent’eva, 1983; Dasgupta et al., 1991; Holdaway, 2000). Garnet core
+ biotite inclusions with no reaction rims represent prograde conditions;
garnet rim and matrix biotite with equilibrium and no retrogression
textures represent peak conditions; and matrix garnet-plagioclase-
muscovite-biotite with post-peak breakdown represent retrograde con-
ditions. All pairs were selected from equilibrium assemblages confirmed
by BSE imaging and EMPA. The average temperatures estimated for the
core-rim of samples DL-12 and AS-8 by applying garnet-biotite geo-
thermometer are 422°C-494°C for the chlorite-biotite zone;
436°C-528°C for the garnet-biotite zone; 454°C-556°C for the kyanite-
biotite zone and 689°C-745°C for the sillimanite-K-feldspar zone. The
sample ASK-79 yielded a core-rim temperature of 648°C-725°C for the
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sillimanite-K-feldspar zone. For the estimation of pressure in both the
metapelitic schists and gneisses, the Garnet-Biotite-Plagioclase-Quartz
(GBPQ) geobarometer (Wu et al., 2004) and the GASP geobarometer
(Holdaway, 2001) were used. For GBPQ and GASP geobarometry, co-
existing pairs of Garnet-Biotite-Plagioclase-Quartz in equilibrium
assemblage without Al-silicate buffer, and Garnet-Plagioclase-Al;SiOs-
Quartz in equilibrium were used to estimate the prograde, and peak
pressure conditions. The average pressures estimated respectively for
the core/rim are 0.35-0.52 GPa for the chlorite-biotite zone; 0.40-0.54
GPa for the garnet-biotite zone; 0.44-0.55 GPa for the kyanite-biotite
zone and 0.61-0.66 GPa for the sillimanite-K-feldspar zone. A revised
Ti-in-Biotite geothermometer experimentally calibrated by Wu and
Chen (2015) for a pair of matrix ilmenite/rutile bearing biotite was used
to estimate the peak temperature for the above zones of the metapelitic
schists and gneisses by assuming Ti-saturation in biotite. A temperature
of 477°C was calculated for the chlorite-biotite zone; 566°C for the
garnet-biotite zone; 607°C for the kyanite-biotite zone and 746°C for the
sillimanite-K-feldspar zone, with a propagated uncertainty of +65°C
raised through calibrations, analytical biasness, pressure estimation,
and assumption of elemental Fe>*. The matrix P-T conditions of 0.53
GPa and 571°C were estimated for the pair of matrix phases of Garnet-
Plagioclase-Muscovite-Biotite in the metapelitic gneisses by employing
GPMB-Fe geobarometer (Holland and Powell, 1998) and Garnet-biotite
geothermometer (Aranovich et al., 1988). These P-T estimates were
derived under the assumption of local chemical equilibrium within a
closed system at the thin section scale, as evidenced by the systematic
prograde compositional zoning preserved in garnet without indications
of significant open-system behavior such as pervasive ingress of fluid,
metasomatism, or veining. The sparse chlorite in the matrix suggests
only minor retrograde hydration, further supporting predominantly
closed-system behavior during peak and near-peak metamorphism.
There are several measures of uncertainties in the P-T calculations, out
of which most important sources may arise from calibration datasets,
activity-composition models, analytical precision, and potential minor
deviations from ideal equilibrium, viz., £20-60°C for temperatures and
+0.10-0.15 GPa for pressures (see thermobarometric models of Holland
and Powell, 1998; Holdaway, 2000, 2001; Wu et al., 2004; Wu and
Chen, 2015).

4.5. Isochemical phase diagram modelling

4.5.1. Peak P-T phase diagram

Isochemical phase diagrams were calculated for the measured bulk
composition from XRF using the Perple X software package (Connolly,
2005) to constrain the peak pressure-temperature conditions and
metamorphic evolution of representative metapelitic samples (DL-12,
AS-8, and ASK-79) from the kyanite-biotite and sillimanite-K-feldspar
zones (Fig. 8). The calculations use the internally consistent thermody-
namic dataset of Holland and Powell (2011; hp62ver.dat file) and
activity-composition models (White et al., 2014), with details of the
models (supplementary Table S4). Phase diagrams with isopleth contour
diagrams were constructed in a MnNCKFMASHT system using bulk-rock
compositions. Uncertainties in P-T estimates incorporate analytical er-
rors and dataset uncertainties (Holland and Powell, 2011). Key uni-
variant reaction boundaries, viz., kyanite-sillimanite transition, melt-in,
muscovite-out, and cordierite-in curves were contoured and super-
imposed on the diagrams to demonstrate the assemblage stability.

The phase diagram for kyanite-biotite zone was constructed for the
sample DL-12 using measured bulk-rock composition within a P-T
window ranging from 0.2 to 0.7 GPa and 300-700°C respectively
(Fig. 8a). The diagram topology features divariant fields dominated by
hydrous assemblages at lower grades, transitioning to Al»SiOs poly-
morphs at mid-to-high temperatures. The prograde assemblages include
muscovite-biotite-garnet-plagioclase-quartz evolving through peak
mineral assemblages of garnet-muscovite-biotite-kyanite-feldspar-
ilmenite-quartz, stable in the divariant field within a P-T range of
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Fig. 8. A. isochemical phase diagram for the kyanite-biotite zone of the metapelitic schist (sample no. dl-12) in the mnnckfmasht system. the bulk composition in
weight % from the xrf data are: na,0 1.63, CaO 1.19, MnO 0.06, K0 4.68, FeOT 6.13, MgO 2.58, Al,03 18.83, SiO, 60.54, H,0 1.75 TiO, 0.80; The phase topology
has been marked by kyanite-sillimanite transition curve, garnet-out curve, and muscovite-out curve, and has been contoured and intersected with the isopleths of
garnet for the calculation of peak P-T conditions; b. Isochemical phase diagram for the sillimanite-K-feldspar zone of the metapelitic gneisses (sample no. AS-8) in the
MnNCKFMASHT system. The bulk composition in weight % from the XRF data are: Na,O 3.49, CaO 0.35, MnO 0.01, K,O 3.52, FeOT 1.41, MgO 1.08, Al,03 15.58,
Si0, 72.00, H,0 2.31 TiO, 0.13; The phase topology has been marked by kyanite-sillimanite transition curve, melt-in curve, cordierite-in curve, and muscovite-out
curve, and has been contoured and intersected with the isopleths of garnet for the calculation of peak P-T conditions; c. Isochemical phase diagram for the sillimanite-
K-feldspar zone of the metapelitic gneisses (sample no. ASK-79) in the MnNCKFMASHT system. The bulk composition in weight % from the XRF data are: Na,0O 1.27,
Ca0 0.70, MnO 0.04, K»0 3.72, FeOT 9.23, MgO 3.80, Al,03 19.07, SiO, 55.72, H,0 6.68 TiO, 0.85; d. The phase topology has been marked by kyanite-sillimanite
transition curve, melt-in curve, cordierite-in curve, and muscovite-out curve, and has been contoured and intersected with the isopleths of garnet to show the peak P-
T conditions.
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0.5-0.6 GPa, and ~540-580°C. Garnet is stable above 420°C, and
restricted to pressure ranging from 0.25 GPa to 0.62 GPa. Kyanite-
sillimanite transition occurs at a P-T of 510°C and 0.39 GPa.
Muscovite-out curve occurs at a range of 610°C-700°C, which is beyond
the stability field of the peak equilibrium mineral assemblages.
Compositional isopleths of garnet intersect at ~558°C and 0.56 GPa.

The phase diagram for the sample AS-8 was constructed within a P-T
window ranging from 0.2 to 0.8 GPa and 300-900°C for the measured
bulk composition (Fig. 8b). The topology comprises different stability
fields with melt above ~710°C, with fewer hydrous phases. Kyanite-
sillimanite transition curve occurs at a temperature above 535°C and
pressure above 0.43 GPa. Muscovite-out curve, cordierite-in curve, and
melt-in curve occur above 600°C, 630°C, and 710°C respectively. The
peak assemblages are garnet-biotite-sillimanite-K-feldspar-cordierite-
quartz-melt, followed by prograde assemblages of Garnet-Biotite-
muscovite-K-feldspar —plagioclase-kyanite-Quartz and muscovite-
biotite-K-feldspar —plagioclase-quartz-rutile as retrograde mineral as-
semblages. Compositional isopleths for garnet end members intersect at
around 790°C and 0.66 GPa in the peak P-T equilibrium condition.

The phase topology for the sample ASK-79 constructed within a P-T
window ranging from 0.2 to 0.8 GPa and 300-900°C comprises different
stability fields with melt-in curve occurring above ~610°C, with little
hydrous phases (Fig. 8c). Kyanite-sillimanite transition curve occurs at a
temperature above 575°C and at a pressure above 0.37 GPa. Muscovite-
out curve and cordierite-in curve occur at temperatures above 525°C,
and 530°C respectively. The peak assemblages are garnet-biotite-
sillimanite-feldspar-ilmenite-quartz-melt, followed by prograde assem-
blages of Muscovite-Biotite-Kyanite-Garnet-Quartz-ilmenite and retro-
grade mineral assemblages of K-feldspar-muscovite-chlorite-
plagioclase-quartz. Compositional isopleths for garnet end members
intersect at around 728°C and 0.66 GPa at peak P-T equilibrium con-
dition. The poor convergence of Xy compositional isopleth may be
attributed to the fractionation behavior of garnet because the original
rocks contain less than 0.1% ‘Mn’ and the Mn content falls to negligible
at the garnet rims.

4.5.2. T-XH,O phase diagram

T-aH20 phase diagrams were constructed to estimate the water
content for the samples DL-12, AS-8, and ASK-79 during peak meta-
morphic conditions (Fig. 9a, 9c, 9¢). In sample DL-12, HoO content was
measured for the peak stable mineral assemblages of K-feldspar
—plagioclase-garnet-biotite-muscovite-kyanite-rutile-ilmenite-quartz at
a fixed pressure of 0.55 GPa and T-window between within 300°C-700°C
(Fig. 9a). Intersection of compositional isopleths of garnet and biotite
plotted in the phase diagram reveals HoO content around 0.175 mol%.
Similarly, HoO content was estimated in the samples AS-8 and ASK-79
for the peak stable mineral assemblages of K-feldspar-plagioclase-
garnet-cordierite-sillimanite-quartz and K-feldspar-plagioclase-garnet-
cordierite-sillimanite-melt-ilmenite-quartz respectively, at a fixed pres-
sure of 0.66 GPa and a T-window between 300°C and 900°C (Fig. 9c,
9e). From the intersection of compositional isopleths of garnet and
biotite, actual Hy0 content during the peak stage of metamorphism is
found to be around 0.05 mol% for AS-8. For the sample ASK-79, an
approximated HyO content of 0.067 mol% was estimated from the
intersection of compositional isopleths of garnet and biotite. From the
above diagram, it is inferred that the high-H,0 content (>0.1 mol%) in
the sample DL-12 is attributed to the major hydrous phases, viz.,
muscovite, and biotite. At subsequent increase in temperature, hydrous
phases like muscovite- and biotite-melting is initiated accounting for a
more anhydrous mineral assemblage of K-feldspar-sillimanite in the
samples AS-8 and ASK-79, which leads to low-H30 content (<0.1 mol
%). These low value of HoO during the peak metamorphic conditions
suggest dry rocks that further lend support to the attainment of upper
amphibolite-granulite facies transition.
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4.5.3. Phase diagram based on effective bulk composition

Isochemical phase diagrams were constructed for the samples DL-12,
AS-8 and ASK-79 using the EBC data calculated based on the approach of
the Rayleigh fractionation principle (Evans, 2004; Gaidies et al., 2006)
within the same P-T window as the phase diagram computed by
unfractionated bulk composition (Fig. 9b, 9d, 9f). The phase topology of
DL-12 (Fig. 9b) comprises peak assemblages of garnet-biotite-K-
feldspar-plagioclase-kyanite-quartz-rutile. ~Sillimanite-kyanite transi-
tion curve occurs at a temperature above 530°C and pressure above 0.42
GPa. Compositional isopleths of garnet end members intersect at around
571°C and 0.58 GPa. The phase topology for the sample AS-8 (Fig. 9d)
comprises kyanite-sillimanite transition curve above temperature
around 535°C and pressure around 0.43 GPa. The cordierite-in curve
occurs at a temperature above 500°C, whereas the melt-in curve started
to appear above P-T conditions of 0.54 GPa and 765°C. The peak P-T
equilibrium conditions of stable mineral assemblages of garnet-K-
feldspar-plagioclase-melt-cordierite-sillimanite-quartz-rutile calculated
by the intersection of compositional isopleth of garnet end members
occur at around 0.64 GPa and 787°C. The phase topology of the sample
ASK-79 (Fig. 9f) comprises a kyanite-sillimanite transition curve at P-T
conditions above 0.42 GPa and 535°C. Cordierite-in curve started to
appear within the P-T range of 0.2 GPa at 355°C to 0.56 GPa at 900°C,
whereas melt-in curve appears at a temperature above 745°C and
pressure above 0.45 GPa. The sillimanite phase appears in the section at
the expense of muscovite. The intersection of compositional isopleth of
Xre, XMg, Xca, and Xy, of garnet end members suggests that the peak P-T
equilibrium mineral assemblages of garnet-biotite-melt-K-feldspar-
plagioclase-sillimanite-quartz-rutile are stable at around 0.69 GPa and
748°C.

4.5.4. Effect of fractionation on phase diagram

For the sample DL-12, the geometry of Garnet-biotite-K-feldspar-
plagioclase-kyanite-quartz-rutile stability field for the fractionated
bulk compositions is enlarged and shows alteration as compared to
unfractionated bulk compositions, while the calculated P-T conditions
using compositional isopleths show marginal variations, i.e., from 0.56
GPa and 558°C (unfractionated) to 0.58 GPa and 571°C (fractionated).
Muscovite was entirely consumed, whereas plagioclase and rutile
appear as new member assemblages in the peak P-T stability field.

For the sample AS-8, the kyanite-sillimanite boundary is slightly
displaced towards higher temperature at constant pressure. Muscovite
disappears completely from the peak assemblage field and is replaced by
sillimanite. Cordierite becomes stable at lower temperatures than in the
unfractionated diagram. The melt field is restricted and shifted to higher
P-T, whereas the peak assemblage field contracts toward lower P-T,
with estimated peak conditions ~30°C and ~0.02 GPa lower than those
obtained from the measured bulk composition.

In the sample ASK-79, the peak assemblage field is considerably
narrower. The stability of cordierite is displaced to lower P-T and is
restricted to pressures <0.56 GPa, whereas the kyanite stability field
shifts to lower temperature. It is important here to note that the
compositional isopleth contour of Xge from the garnet end member in-
creases toward higher temperature, while Xy, rim isopleths again
intersect observed values correctly only in the fractionated model.

Fractionation causes systematic underestimation of both pressure
and temperature when using unfractionated (measured) bulk composi-
tions. Across the sample suite, peak conditions derived from measured
bulk compositions are typically 3°-20°C and 0.02-0.03 GPa lower
compared with EBC-based estimates, because the measured whole-rock
composition includes garnet that was no longer part of the reactive
system after fractionation. Conversely, EBC modelling yields higher
prograde and peak P-T conditions in most samples (except AS-8, where
conditions are slightly lower). Garnet compositional isopleths are
strongly affected, where Xy, contours shift dramatically, and Xg. values
are typically lower (often roughly half) in EBC diagrams. In several
cases, the Xy isopleths for rim compositions intersect the observed
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Fig. 9. T-XH,0 phase diagram and modified isochemical phase diagram for the kyanite-biotite zone, and sillimanite-k-feldspar zone of the metapelitic schists and
gneisses (sample nos. DL-12, AS-8, ASK-79) in the MnNCKFMASHT system. The T-XH,O phase diagram (in a, ¢, and e) was constructed using the original bulk
compositions derived from the XRF. The modified isochemical phase diagram (in b, d, and f) was constructed using EBC by assuming garnet fractionation during
growth. The EBC was calculated using the approaches of Evans, (2004) and Gaidies et al., (2006), based on Rayleigh fractionation principles. The modified bulk
compositional data in weight % are: Na,O 1.71, CaO 1.38, MnO 5.6, K,0 3.23, FeOT 5.55, MgO 4.17, Al,03 12.02, SiO, 65.57, H,0 0.2 TiO, 0.65; The phase
topology has been marked by kyanite-sillimanite transition curve, and cordierite-in curve, and has been contoured and intersected with the isopleths of garnet for the
calculation of peak P-T conditions; b. Isochemical phase diagram for the sillimanite-K-feldspar zone of the metapelitic gneisses (sample no. AS-8) in the
MnNCKFMASHT system. The modified bulk compositional data in weight % are: Na,0 3.71, CaO 0.41, MnO 1.30, K50 2.46, FeOT 1.29, MgO 1.76, Al,03 10.06, SiO,
78.87, Ho0 0.1 TiO5 0.11; The phase topology has been marked by kyanite-sillimanite transition curve, melt-in curve, cordierite-in curve, and muscovite-out curve,
and has been contoured and intersected with the isopleths of garnet for the calculation of peak P-T conditions; c. Isochemical phase diagram for the sillimanite-K-
feldspar zone of the metapelitic gneisses (sample no. ASK-79) in the MnNCKFMASHT system. The modified bulk compositional data in weight % are: Na,O 1.69, CaO
3.49, MnO 2.20, K,0 3.87, FeOT 3.18, MgO 2.08, Al,03 11.71, SiO, 71.15, H,O 0.1 TiO, 0.55; d. The phase topology has been marked by kyanite-sillimanite
transition curve, melt-in curve, cordierite-in curve, and muscovite-out curve, and has been contoured and intersected with the isopleths of garnet to show the
Eeak P-T conditions.

values within analytical uncertainty only when fractionation is 4.6. Zircon U-Pb ages
accounted for. The improvement in precision of P-T estimates is mar-
ginal, but the accuracy of retrieved conditions and the match between The representative CL images and concordia plots for the zircon
observed and predicted garnet rim compositions are significantly better grains from AS-8 sample are shown in Fig. 11 and Fig. 12. AS-8 is fully
when fractionation is taken into account. Caution needs to be exercised representative of the metapelitic gneiss core in the Askot Klippe, based
as the EBC approach presented here assumes only garnet fractionation on lithological, structural, and analytical criteria. It comes from the
and closed-system behavior after segregation. Additional processes such thickest, most leucosome-rich gneiss layer with a peak sillimanite-K-
as modification of the effective fluid composition, late diffusional re- feldspar—cordierite assemblage, and is the only fresh, unaltered expo-
equilibration of garnet, or fractionation of other phases like plagio- sure located due to limited fresh outcrops in the area. Structurally, it is
clase, and oxides can further displace phase boundaries and must be positioned in the central nappe interior, avoiding greenschist overprint
evaluated on a case-by-case basis. at the margins. Systematic screening showed AS-8 yielded over 140
As the P-T conditions from the conventional thermobarometric clean, prismatic zircons suitable for LA-MC-ICPMS, unlike others
models correspond well with the isopleth thermobarometry and asso- dominated by detrital or fractured grains, while EPMA on minerals from
ciated peak mineral assemblages on the isochemical phase diagrams, the five samples (including AS-8) gave identical P-T conditions (>780°C,
P-T conditions for the core and rim compositions of the garnet are shown 0.6-0.7 GPa), with matching zircon textures and Th/U ratios. Thus, AS-8
in Petrogenetic Grid System (PGS) of Spear et al., (1999) for the pro- captures the full metamorphic history, making additional samples
grade path (Fig. 10). The present P-T path from core to rim is consistent redundant. Zircons in this sample are transparent, light pink to colorless
with the observed mineral assemblages and reactions and noticeably and predominantly long subhedral to euhedral prismatic crystals. Zircon

different from both the Almora Nappe (Joshi and Tiwari, 2009) and the grains have lengths ranging between 100-200 pm with aspect ratios
HHM lying to north of the Main Central Thrust (Hodges and Silverberg, (length/width) of 3:1-1:1. Most zircons show alternating bands of bright

1988; Spencer et al., 2012) in Kumaun. The calculated P-T is consistent and dark luminescence in CL images displaying core-mantle-rim texture.
with the muscovite-biotite-quartz-ilmenite + chlorite (sparse) assem- CL images show relatively bright zircon cores and dark grey mantle and
blages in the matrix crystallized during the regressive arm of the rims. The cores display bright luminescence in CL images, without
regional metamorphism, which is reflected as Ty, point. prominent zoning, and have subrounded outlines, which indicate
14 Core P-T of the schists and gneisses (present study) P-T path
I Rim P-T of the schists and gneisses (present study) | across/above MCT A
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Fig. 10. Simplified petrogenetic grid showing the P-T conditions of core and rim of the selected samples of Almora Group in the system Na;O-CaO-MnO-K,0-FeO-
MgO0-Al,03-Si05-H20-TiO, (MnNCKFMASHT). Petrogenetic grid for metapelitic schists and garnet-cordierite-sillimanite-K-feldspar bearing metapelitic gneisses
(modified after Spear et. al., 1999). Comparison of the present P-T data with the available data from other parts of Himalaya.
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Fig. 11. Representative cathodoluminescence (CL) images of the zircon grains of AS-8 sample from the Askot Klippe, NW Himalaya. The red circles show the position
of spots used for LA-MC-ICPMS zircon U-Pb dating. The spot analyses of the core, mantle, and rim of zircon is done to give the detrital and metamorphic ages of the

studied sample. Age is represented in “Ma”.

resorption or abrasion prior to overgrowth, typical of detrital or
inherited magmatic zircons. The lack of zoning suggests homogeneous
growth in a melt environment, possibly from Paleoproterozoic granit-
oids or volcanic arcs along the NICM. Th/U ratios ranging from 0.32 to
0.38 are characteristic of magmatic zircons, where Th is more readily
incorporated into the lattice due to its compatibility in igneous melts
(Hoskin and Schaltegger, 2003). In contrasts the metamorphic over-
growth on the zircon cores with lower ratios reflects the preservation of
primary igneous chemistry despite later overprints. The mantles show
moderate luminescence with weak oscillatory to sector zoning. This
zoning pattern is suggestive of metamorphic overgrowth, often resulting
from solid-state recrystallization or fluid-mediated precipitation during
prograde metamorphism. The dominance of mantles in sections suggests
significant overgrowth volume. Th/U ratios ranging from 0.1 to 0.3 are
typical for metamorphic zircons, where Th is less incorporated perhaps
due to competition with other phases or depletion in metamorphic fluids
(Rubatto, 2017). The sector zoning further supports metamorphic con-
ditions, as it arises from differential growth rates on crystal faces during
slow, diffusion-limited recrystallization. The rims exhibit darker lumi-
nescence with an unzoned or homogeneous appearance. This lack of
zoning is common in zircons formed during partial melting, where rapid
growth in melt pockets homogenizes the structure. The dark CL indicates
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high U content or radiation damage, aligning with the present evidence
of migmatization in the sillimanite-K-feldspar zone. Th/U ratios ranging
from 0.02 to 0.09 may be diagnostic of anatectic zircons, as partial melts
during high-temperature metamorphism preferentially incorporate U
over Th, often due to Th sequestration in accessory phases like monazite
(Yakymchuk et al., 2018).

U-Pb dating has been conducted on the core and rim of the same
zircon grain. Th, U, and Pb concentrations of the analyzed zircons range
from 7.56-821 ppm, 195.3-2701 ppm, and 2.29-307 ppm, respectively;
with Th/U ratios of 0.02-0.93 (see Supplementary Table S5). Zircon U-
Pb data of this sample defines discordant ages with very few concordant
ages, that indicate variable Pb loss. Analyses conducted on the core of
the zircons yielded two older ages of ca. 2159.1 £ 8.1 Ma and ca. 1972.6
+ 7.9 Ma respectively. Similarly, spot analyses for mantle of the zircons
yielded an upper intercept age of 1850.30 + 7.63 Ma (Mean square
weighted deviation, MSWD, = 2.4, n = 40) while analysis on the rim
yielded an upper intercept age of 1616.82 + 8.41 Ma (MSWD =3.1,n =
28) which is consistent with the observed peak ages in the relative
probability graph of the zircon U-Pb analyses.
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western Himalaya.
5. Discussions
5.1. Mineral paragenetic evolution

The cross-cutting micas of two generations forming at different an-
gles indicate a continuous change in the orientation of the strain ellip-
soid during later metamorphism across all metamorphic zones in the
area. The pressure shadow around garnet is developed as a result of
synkinematic crystallization of the garnet core and post kinematic
crystallization of a relatively inclusion-free rim. The development of
scattered tiny garnet idioblasts in the matrix further substantiates that
the metamorphism outlasted the deformation. Some garnets show
development of fractures due to localized late-stage brittle deformation.
In the metapelitic gneisses prograde metamorphism is triggered by the
muscovite and biotite dehydration melting reactions, which suggests
overstepping the amphibolite facies conditions. It is crucial to mention
here that sharp and fresh contacts between the second-generation
muscovite-quartz and biotite-quartz indicate the retention of fluid in
the rock when it started cooling, a fact corroborated by random orien-
tation of the last-generation coarse muscovite flakes that likely devel-
oped by the reaction K-feldspar + sillimanite + melt = muscovite +
quartz (Dyck et al., 2020) under plastic conditions induced by the hy-
drostatic stresses in a melt dominated system. The garnet-biotite-K-
feldspar-ilmenite-H,O phase assemblage likely crossed its stability field
as evidenced by the development of incipient reaction rims at the quartz-
biotite contact (Caddick et al., 2010) with the garnets showing stronger
growth zoning profile from core to rim indicating prograde nature to-
wards higher temperature (see zoning profiles in Fig. 6). Presence of
micro-perthites developed due to immiscibility during cooling of the
anatectic melts produced at the peak metamorphic conditions that led to
formation of the gneisses; corroborate the high temperatures and mul-
tiple feldspar phases in the isochemical phase diagram of metapelitic
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gneisses.

We demonstrate that the metapelitic gneisses in the Askot Klippe are
products of in-situ anatexis through a multi-scale, mutually reinforcing
dataset; (1) Field-scale continuity through gradational metamorphic
progression from greenschist-facies phyllites to kyanite-biotite schists to
sillimanite-cordierite gneisses, with concordant foliation and no intru-
sive contacts (Fig. 3; cf. Searle and Szulc, 2005; Imayama et al., 2019),
(2) Petrographic evidence of melting through sillimanite-K-feldspar in-
tergrowths replacing muscovite (Fig. 5d; reaction: Ms + Qtz — Sil + Kfs
+ H0; Spear et al., 1999), (3) Leucocratic segregations with interstitial
K-feldspar and quartz (Fig. 3e), interpreted as trapped melt pockets
(Sawyer, 1999), (4) Geochemical fingerprint in strongly peraluminous
(A/CNK = 1.3-1.6) metapelitic gneisses and biotites with high Al
(1.8-2.1 apfu), consistent with melt-residue systems (Stevens and
Clemens, 1993; Das et al., 2019), (5) P-T constraints through Peak
conditions of 6-8 kbar and 735°C-790°C (conventional thermobarom-
etry and phase diagram modeling; fig. 8, fig. 9), within the fluid-absent
melting field for metapelites (Spear et al., 1999; White et al., 2001).

5.2. Indiscrepancies between the automated Theriak P-T path and
conventional P-T path modelling approach

We compare P-T conditions for the three samples for the modelings
using Theriak P-T path and conventional thermobarometry. Admittedly,
the two modeling approaches are controlled by the thermodynamic
constraints (Spear and Peacock, 1989) and possible sources of error in
the system include molar enthalpy and entropy of formation, heat ca-
pacity, molar volume, solution models, and Margules parameter
(Margules, 1895). It is presumed that the system is closed and there is no
exchange of material that could change the compositions and mineral
phases present in the rock (Lanari and Engi, 2017). We evaluate the
results for the three samples using both the modeling approaches to
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verify the data consistency.

The P-T paths inferred from the Theriak-Domino MATLAB modeling
are not consistent with the textural and mineralogical observations. It is
likely that the constraints used in the Theriak P-T path modeling do not
correspond with the ambient physical conditions during the meta-
morphism under question. The probable reasons adversely affecting the
reconciliation between the Theriak P-T path modeling and the conven-
tional thermobarometric modeling approach are:

(1) For the sample DL-12, the maximum P-T conditions estimated for
metapelitic schists using both conventional geothermobarometry
and isochemical phase diagram modelling approach are around
0.55-0.56 GPa and 556-560°C. On the other hand, High-
Resolution P-T path modelling approach yields a peak P-T con-
dition ~565°C and 0.59 GPa. As a result, DL-12 shows typical P-T
uncertainties of 0.05-0.09 GPa and 5-9°C. High-Resolution P-T
path modelling indicates a 5-9°C higher temperature and
0.035-0.04 GPa higher pressure as compared to the other two
approaches mentioned earlier. Such slight deviations in P-T es-
timates using different approaches lie within the uncertainty
limits (Palin et al., 2016) for all the studied pelitic schists.
Therefore, it can be assumed that the present thermobarometric
results from conventional as well as isochemical phase diagram
modelling are quite consistent with the High-Resolution P-T path
modelling approach.

Using conventional thermobarometry and isochemical phase di-
agram modelling, AS-8 yields P-T conditions of around 0.65-0.66
GPa and 730-760°C, whereas High-Resolution P-T path model-
ling approach yields P-T condition ~0.64 GPa and 570°C. The
High-Resolution P-T path modelling shows a decrease of 190°C in
temperature and 0.02 GPa in pressure. The pressure deviation is
negligible, but the temperature deviation is far beyond the un-
certainty limits reported by Palin et al. (2016). Similarly, ASK-79
yields P-T conditions of 0.66 GPa and 725°C using conventional
as well as isochemical phase diagram modelling, whereas a P-T
estimate of around 0.64 GPa and 590°C was retrieved using High-
Resolution P-T path modelling approach. There is a P-T deviation
of 0.02 GPa and 135°C. Once again, pressure estimates remain
insignificant, while the temperature deviation lies outside
analytical uncertainty. The magnitude of temperature differences
for the metapelitic gneisses are very high compared to the pres-
sure differences because garnet crystallization exceeded tem-
peratures of 600°C which continued up to the peak P-T conditions
of metamorphism, supported by its zoning characteristics, diffu-
sional modifications and bulk compositional heterogeneities,
which clearly violate the assumptions made by Moynihan and
Pattison (2013). The core-rim P-T conditions of the metapelitic
schist computed by the Theriak P-T path modeling in conjunction
with MATLAB correspond well to the P-T conditions by the con-
ventional thermobarometric approach. Interestingly, the two
approaches yield similar results, which suggest the calculations
below 600°C are valid given the limitations of the Theriak P-T
path modeling approach. The negligible pressure differences of
0.02-0.03 GPa computed from the above two approaches for the
metapelitic schists does not affect the inferred P-T stability fields
of peak equilibrium mineral assemblages. The small changes in
the calculated pressures likely reflect (very low angle) P-T
gradient established for the area rather than meaningful geolog-
ical variations (Fig. 10).

The P-T path modeling using Theriak-Domino software assumes
that the garnet must preserve the original chemical zoning with
little re-equilibration, implying the temperatures should not
exceed 600°C. However, the petrographic study along with the
BSE image of garnets in gneisses of the Almora Group shows two
distinct generations of garnet growth, one showing the deformed
inclusion- rich core while the other shows inclusion-free

(2

3
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idioblastic rim, which documents at least two metamorphic
phases of (see BSE images and X-ray elemental maps in Fig. 6)
garnet crystallization. That the temperature exceeded 600°C is
substantiated by the petrography, equilibrium mineral assem-
blages, thermobarometric estimations, and Perple_X phase sec-
tion modeling, all of which consistently suggest that the
temperatures did far exceed 600°C. The contradiction between
the results of the P-T path modeling using Theriak-Domino soft-
ware and the other methods in vogue is expected as the as-
sumptions for the later are not fulfilled for the metapelitic
gneisses.
(4) Given the possibility of high-T homogenization inferred by the
subdued bell-shaped ‘Mn’ profile (Woodsworth, 1977), it is likely
that the garnet growth continued up to the peak P-T conditions.
However, the maximum P-T obtained by the Theriak-Domino
modeling are 0.63 GPa- 591°C for the garnet rim in the meta-
pelitic gneisses is inconsistent with the generation of K-feldspar-
sillimanite assemblage and the attendant melting, which occurs
only above 710°C at 0.65 GPa (Dyck et al., 2020) in the pelitic
gneisses. Furthermore, the observed zoning data does not corre-
spond to the modeled zoning data of garnet for the samples ASK-
79 and AS-8, which highlights the limitations of Theriak P-T path
modeling above 600°C.
The effects of resorption and the fractionation behavior of garnet
crystal with assumption of fluid saturation in the system play a
significant role in shifting the temperature estimation by the
Theriak-Domino program.
The most significant difference between the Theriak P-T path
modeling and the conventional thermobarometric modeling lies
in the observed reaction histories and mineral assemblages of the
metapelitic gneisses. Unlike Theriak-Domino program, these are
independent of any assumption about the preservation of garnet
zoning. Conventional thermobarometric modeling along with the
Isochemical phase diagrams are consistent with the observed
mineral assemblages and reactions at peak P-T equilibrium con-
ditions, like the muscovite-quartz, and biotite-quartz reactions in
the rock. Numbers of thermobarometric software programs
including THERMOCALC (Powell et al., 1998) and TWQ (Berman
1988, updated 1991; Berman and Aranovich, 1996 for the end-
member phases) were used to retrieve the P-T for the meta-
pelitic schists and gneisses and they closely correspond to the
petrographic observations. However, we demonstrate the Ther-
iak P-T path modeling does not reflect the petrographic obser-
vations for metapelitic gneisses of the Askot Klippe.
The temperatures of the studied metapelitic gneisses are the
minimum estimates of the peak P-T conditions. The development
of later assemblages of coarse-grained muscovite-quartz and
biotite-quartz, plagioclase, chlorite indicates the water likely did
not leave the system and the assemblages crystallized later from
the migmatitic melt during the regressive arm of the P-T path
while the rocks cooled.

)

(6)

)

These discrepancies emerge from the assumptions of thermodynamic
parameters and mineral compositions. Slight differences in these input
parameters and observed mineral assemblages can lead to different re-
sults in P-T estimation (Holland and Powell, 1998; Lanari and Engi,
2017). In the present case, observed mineral assemblages, metamorphic
reactions and reaction textures play key role in demonstrating the High-
Resolution P-T path modelling approach is not applicable to the gneisses
in the area and likely not applicable to any gneisses. The garnets in the
studied metamorphic rocks crystallized during the prograde meta-
morphism were subjected to diffusional modification during its re-
equilibration as the garnet crystallization temperatures exceeded
600°C, a temperature range that falls outside the applicability of High-
Resolution P-T path modelling approach. In addition, Pressure-
Temperature (P-T) estimations in metamorphic rocks are subject to
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uncertainties from analytical errors, inconsistencies in the properties of
internal thermodynamic database (e.g., molar enthalpy of formation,
molar entropy, molar volume, heat capacity, bulk modulus, Landau
parameters, and Margules parameters; White et al., 2014), and closed-
system behavior of garnet. Detailed analyses of garnet fractionation at
each step of its crystallization, equilibrium kinetics, reaction mecha-
nisms, and the relationship between initial Bulk composition and
effective Bulk composition of the garnet (Tinkham and Ghent, 2005)
may be useful to better constrain the thermal evolution of these meta-
morphic rocks.

The petrographic observations clearly show disequilibria between
the muscovite-quartz, plagioclase-quartz, muscovite-plagioclase, bio-
tite-quartz, and biotite-garnet indicated by corroded boundaries while
the K-feldspar-sillimanite and K-feldspar-cordierite contacts show sharp
boundaries that suggest equilibrium. The garnet chemical profile for the
metapelitic schists and gneisses reflects the P-T conditions during the
garnet growth. During the waning stages of metamorphism when the
rock was being returned to shallower crustal levels along the retro-
gressive arm of the P-T loop, the stable coarse muscovite and biotite
flakes along with the quartz grains with sharp boundaries crystallized at
571°C temperature and 0.53 GPa pressure.

While the automated high-resolution P-T path modeling using
Theriak-Domino in conjunction with MATLAB serves as a powerful tool
for reconstructing prograde metamorphic trajectories from preserved
compositional zoning in garnet crystals, it is inapplicable to high-
temperature environments, particularly for melt-bearing metapelites,
where evidence of partial melting suggests supra-solidus conditions. The
model's foundational assumptions limit its applicability beyond the wet
solidus, which means the modeling cannot account for melt production
or its effects on effective bulk composition, often resulting in under-
estimated peak temperatures that align more closely with lower
amphibolite facies rather than the granulite transition facies suggested
by textural evidence and conventional methods for the present area.
Furthermore, at elevated temperatures, garnet zoning preservation
breaks down due to diffusion-driven homogenization, which can modify
compositional profiles and affects the accuracy of isopleth intersections
used in the modeling. However, kinetic considerations, such as diffusion
modeling employing finite difference methods accounting for Fe-Mg-
Mn-Ca diffusivities may be integrated to test sensitivity to bulk
composition adjustments for melt loss, which can help constrain the
timescale and thermal evolution of the rock Given the consistent dis-
crepancies where the Theriak yields lower temperatures compared to
the conventional thermobarometry and phase diagram modeling in
supra-solidus regimes, it is of limited applicability, and its results should
not be overemphasized.

5.3. Geochronological evidence

In the present sample AS-8, it is imperative to note that zircon cores
having high luminescence, unzoned, and homogeneous structures pre-
serve the initial growth during peak anatexis (Kohn, 2017). The zircon
core in these conditions might have formed by partial melting followed
by dissolution and reprecipitation (Rubatto, 2017). Although, Th/U
ratio in the core of zircon grains falls above 0.1 indicating magmatic
precursor, the evidence of high Th/U ratio (>0.1) for early-formed
metamorphic zircon near peak conditions due to the inclusion of Th
during high-temperature anatexis (Yakymchuk et al., 2018) cannot be
ruled out. Moreover, the majority of workers believe that high Th/U
values in the core of zircon suggest syn-metamorphic, high-T anatectic
origin (Schaltegger et al., 1999; Harley et al., 2001; Hokada and Harley,
2004), which corroborates well with the present arguments. On the
other hand, weak to strong oscillatory zoning observed in the mantle
and rims of zircon crystals indicate metamorphic origin, particularly
where fluid-influenced thermal conditions prevail during partial melting
(Schaltegger et al., 1999; Corfu et al., 2003). Further, low Th/U ratios
(<0.1) in the rim of zircon crystals due to possible ‘U’ enrichment during
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recrystallization (Harley et al., 2007) and observed oscillatory zoning
resulting from kinetic feedback at the crystal-melt interface driven by
the anatectic melts (Yardley et al., 1991) are the key indicator of
metamorphic growth of zircon.

The multiple metamorphic origin of zircon was further ratified by the
petrographic evidences, viz., (1) two generations of mica, (2) two gen-
erations of garnet with earlier cores preserving prograde conditions and
later overgrowths recording a secondary event, (3) Cordierite in the rims
of garnet suggesting a late-stage decompression, aligning with the
younger zircon rims (Harris and Holland, 1984).

The unzoned zircon cores are interpreted as detrital based on their
high Th/U ratios (>0.10) and Archean to Paleoproterozoic ages (2159
Ma and ca. 1972 Ma). The age of ca. 1860-1884 Ma can be considered as
the first anatectic event to have preserved the initial growth during peak
anatexis, often coeval with Sillimanite and K-feldspar replacing
muscovite, whereas the age of ca.1610-1616 Ma can be attributed to be
the second anatectic event and the age of peak metamorphism, exhibited
by the mineral assemblages of garnet-K-feldspar-sillimanite and coeval
with Cordierite grains around garnet rim. Moreover, zircon U-Pb sys-
tematics shows no Pb-loss or young rims in these nappe-core samples
(concordance >95%), confirming closed-system behavior since ~1610
Ma. Therefore, the present data suggest that garnet-sillimanite-K-
feldspar bearing metapelitic gneisses from the Askot Klippe like other
klippen of Lesser Himalaya preserve pre-Himalayan metamorphic sig-
natures and maintained the same metamorphic grade through subse-
quent geological processes up to Himalayan orogenesis, without
recording any overprint of Himalayan metamorphism due to limited
Cenozoic reworking (Mukherjee et al., 2024, Joshi et al., 2025). These
equilibrium conditions in garnet-sillimanite-K-feldspar mineral assem-
blages persist because these rocks are possibly derived from the stable
cratonic interiors, and least affected by the subsequent later deformation
and metamorphism since Paleoproterozoic, thus avoiding deep burial or
fluid influx during the Himalayan cycle (Kohn, 2014). In this backdrop,
we can conclude that the 1860-1884 Ma and 1610-1616 Ma ages reflect
two Paleoproterozoic metamorphic events, supported by texturally and
chemically controlled zircon domains (core-mantle-rim), diagnostic
melting reactions, and the inferred metamorphic ages, particularly
~1610-1616 Ma event, are consistent with peak P-T conditions inde-
pendently obtained from EBC phase diagram modeling, providing a
robust cross-validation between zircon U-Pb chronology and the
metamorphic framework.

5.4. Implications for regional geodynamics

Based on the whole-rock geochemistry, High-Resolution P-T path
modeling, thermobarometric data as well as isochemical phase dia-
grams, we show that the highest-grade metamorphic rocks of the Almora
Group of the Askot Klippe belong to amphibolite-granulite facies con-
ditions that exceeded 0.65 GPa and 745°C. Later during cooling, while
they returned to shallower levels with essentially no fluid loss, the rocks
witnessed solidification of the migmatitic melt with crystallization of
micas involved in the stable muscovite-quartz, biotite-quartz and
muscovite-plagioclase assemblages. The melting/anatexis marks the
highest metamorphic grade in the central parts of the klippe. There are
marked similarities in the lithotectonic setup, and textural-
mineralogical relations, viz. the occurrence of garnet porphyroblasts
with synkinematic cores and inclusion-free idioblastic rims, and struc-
tural details like the occurrence of the highest-grade assemblages in the
antiformal cores of the Almora Group, between the Askot Klippe and the
Almora Nappe.

P-T path reported in the present study corresponds well with the P-T
path reported by Das et al., (2019) for the Askot Klippe. It is interesting
to note that the P-T paths for the prograde arm of the Almora Nappe
(Joshi and Tiwari, 2009) and the prograde arm deduced for the High
Himalayan Metamorphics (HHM) (Hodges and Silverberg, 1988;
Spencer et al., 2012) correspond well, which favours the correlation of
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the HHM and the Almora Nappe metamorphics.

The shallow P-T paths deduced for the Paleoproterozoic meta-
morphism in the present work and Joshi et al. (2025) suggest low angle
subduction, which has been suggested as the most common subduction
type for orogenies older than 1.6 Ga (Abbott et al., 1994; Smithies et al.,
2003; Cawood et al., 2006; Hawkesworth et al., 2016; Perchuk et al,
2023, 2025). This substantiates our inference that the spatiotemporal
setting of Paleoproterozoic metamorphism in the Askot Klippe in Lesser
Himalaya is distinct from the P-T trajectory deduced for the Almora
Nappe (Joshi and Tiwari, 2007; 2009) and the High Himalayan Se-
quences (Hodges and Silverberg, 1988; Spencer et al., 2012). A sche-
matic representation of the tectonic set up of the Kumaun Himalaya
(Fig. 13) for the crustal shortening induced thrusting during the Ceno-
zoic Himalayan orogeny (modified after Celerier et al., 2009a and Das
et al., 2019), depicts the mechanism of the southward tectonic
emplacement of the Lesser Himalayan klippen (Askot and Chhiplakot)
and the Almora Nappe, with the tectonically underlying granite-
granodiorite equivalents of Ramgarh Group as the basement.

5.5. Formation of the Columbia supercontinent and its close association
with the Lesser Himalaya

The Columbia supercontinent initially amalgamated during 2.1-1.8
Ga with the close packing of several major cratonic fragments of the
world, namely America, Africa, Australia, Antarctica, Siberia, Laurentia,
Baltica, Scotland, Greenland, and India (Fig. 14a), including the North
Indian Cratonic Block (NICB) and South Indian Cratonic Block (SICB)
along the Central Indian Tectonic Zone (CITZ) (Yedekar et al., 1990;
Jain et al., 1991; Mazumder et al., 2000; Rogers, 2000; Rogers and
Santosh, 2002; Zhao et al., 2002; Condie, 2002). This assembly occurred
in two stages: Stage I (~2.0-1.8 Ga) involving initial accretion through
subduction and continent-continent collisions, forming the mega-
continent Columbia with global Paleoproterozoic mobile belts like the
Trans-Hudson and Nagssugtoqidian orogens, and Stage II (~1.8-1.6 Ga)
characterized by extensional rearrangements and subordinate collisions,
as evidenced by metamorphic records showing a turnover from low- to
high-temperature/pressure conditions globally (Volante and Kirscher,
2024; Brown et al., 2024). The present data suggest robust linkages
between the NICM—the northernmost extension of the Aravalli-Delhi
Mobile Belt (ADMB) of the NICB—and the North China Craton (NCC),
indicative of these terrains of South Asia being contiguous during the
Columbia Supercontinent assembly. Specifically, a metamorphic age of
1.85 Ga from the Trans-North China Orogen is consistent with the pre-
sent geochronological data from the Lesser Himalayan metamorphic
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X Chhiplakot Klippe -

0 R -2
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rocks, which may strongly represent juxtaposition of the NICM with the
North China Craton during Columbia assembly (Kusky et al., 2016; Wu
et al.,, 2018; Wu et al., 2022). This correlation is bolstered by paleo-
magnetic and detrital zircon provenance studies that place the NCC
adjacent to the northern margin of the ICB during the late Paleo-
proterozoic, with shared subduction-accretion signatures preserved in
ophiolitic mélanges and arc-related granitoids dated at ~1.9-1.85 Ga
along the NCC's southern margin (Kusky et al., 2007; Wu et al., 2018).
Further, seismic imaging reveals thick slab debris in the mantle beneath
the NCC, supporting double-sided subduction models that facilitated
rapid amalgamation, with the Central Orogenic Belt forming at ~1.85
Ga through collision of the Western and Eastern Blocks (Santosh, 2010;
Zhang et al., 2012). The present 1.62 Ga metamorphic event is consis-
tent with protracted outgrowth along continental margins after the main
~1.8 Ga welding of Columbia's core, extending amalgamation processes
to at least ~1.6 Ga in peripheral regions (Zhao et al., 2004; Kirscher
et al., 2021; Volante et al., 2022). Geochronological data from U-Pb
zircon dating in the metapelitic gneisses may represent a collisional
tectonic setting, potentially linking the NICM to the Eastern Cathaysia
Block, as proposed in reconstructions where the Lesser Himalaya con-
nects to the South Korean Peninsula (Yu et al., 2012; Wang et al., 2021).
This late accretion is consistent with active margin dynamics on the
Indian Block, evidenced by similar ~1.6 Ga events in adjacent terranes
of Cathaysia Block, reflecting ongoing subduction-accretion rather than
craton-wide stability (Kaur et al., 2021; Xia and Xu, 2019).

The lack of a comparable ~1.62 Ga metamorphic event in the NCC
can be attributed to its earlier stabilization following the ~1.85 Ga
Trans-North China Orogen collision, which concluded the craton's as-
sembly (Zhao et al., 2002; Kusky et al., 2007). Post-1.85 Ga, the NCC
transitioned to an extensional regime with rifting and anorogenic
magmatism from ~1.8-1.6 Ga, marking the onset of Columbia's frag-
mentation rather than active collision (Lu et al., 2008). This intraplate
setting precluded major collisional metamorphism at ~1.62 Ga in the
NCC's core, while peripheral margins like the NICM experienced
ongoing tectonic activity due to differing block juxtapositions, viz., the
ICB's linkage to Cathaysia rather than direct adjacency to the NCC in
some previous models (Johansson, 2009; Yu et al., 2012). Paleomag-
netic and geological data further suggest that by ~1.6 Ga, the NCC was
undergoing rifting along its northern margin, separating from other
cratonic blocks without high-grade metamorphic overprint (Zhang
etal., 2012). Evidences lean towards spatial heterogeneity in Columbia's
assembly, where the NICM-Cathaysia Block connection might have
experienced protracted collisional outgrowth, while the NCC, poten-
tially more internal or adjacent but not directly involved in this margin,
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Fig. 13. Simplified cross section of the Kumaun Himalaya depicting the Askot Klippe along with the Almora Nappe in the Kumaun Lesser Himalaya (modified after
Celerier et al., 2009; Das et al., 2019). The root zone of the thrust sheet is also shown in the High Himalaya. The P-T paths of the Askot Klippe, Almora Nappe and
MCT of High Himalaya are shown to demonstrate the strength of correlation between the nappes and klippen of NW Kumaun Himalaya.
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Fig. 14. Paleogeographic and paleotectonic configurations of Columbia Supercontinent (Modified after Zhao et al. 2002; Yu et al. 2012; Wang et al. 2021).

underwent post-collisional extension. This ~1.8-1.6 Ga “magmatic
quiescence” in the NCC, with episodic extension, contrasts sharply with
the collisional metamorphism in the Askot Klippe.

Magmatic linkages among the ADMB of the NICB, NW Himalaya, and
Cathaysia Block, along with relations based on granulite facies meta-
morphism between the NICB and Cathaysia, were previously established
(Yuetal., 2012; Wang et al., 2021), suggesting the NICM was adjacent to
the Cathaysia Block (CB) along the Lesser Himalayan Sequences
(Fig. 14b). These linkages are strengthened by detrital U-Pb zircon ages
from Lesser Himalayan Crystalline Sequence (LHCS) metasedimentary
rocks yielding maximum depositional ages of ca. 1.85 Ga, matching
those in the Aravalli region and Eastern Cathaysia Block, indicating
synchronous arc magmatism and subduction (Mandal et al., 2016;
Mukherjee et al., 2019). The present data on high-grade Paleoproter-
ozoic metapelitic gneisses in the NW Himalaya further bridges the gap
between the NICB and CB by reporting amphibolite-granulite facies
transition rocks from the NICM exposed in the NW Himalaya. These
rocks exhibit isotopic similarities in ‘Hf’ and ‘O’ compositions, reflecting
reworking of Neoarchean-Paleoproterozoic crust in a convergent
setting, akin to those in the Eastern Cathaysia Block and South Korean
Peninsula (Yu et al., 2012; Cawood et al., 2020). In the Himachal
Himalaya, U-Pb zircon ages of ~1.85 Ga from granitic gneisses like the
Wangtu and Baragaon represent protolith crystallization in an arc
setting, with trace elements showing continental crust remelting and
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negative anomalies in Ta, Nb, P, Ti (Miller et al., 2000; Webb et al.,
2011).

There are multiple lines of evidence for the breakup of different
continental cratonic blocks (Bleeker, 2003) and their globally well
documented irregular, non-episodic amalgamation, dissemination, and
re-amalgamation in the form of supercontinents from the Paleoproter-
ozoic to Phanerozoic (Zhao et al., 2002, 2004; Ernst et al., 2013).

Here we present the hitherto missing evidence of pre-Himalayan
polymetamorphic events during the Columbia configuration, including
the ~1.85 Ga event tied to peak collision and the ~1.62 Ga event
marking post-collisional rifting, as seen in Ultra High-Pressure Meta-
morphism (UHPM) in Eastern Ghats (~1.6 Ga) and intrusions of the
Salari Granite (~1.54 Ga) (Yin et al., 2010; Bhowmik et al., 2012). To
substantiate our arguments, we propose a model (Fig. 15) to demon-
strate the tectono-metamorphic evolution of the metapelitic rocks of the
Askot Klippe and suggest their paleo-architectural association with the
Aravalli Supergroup and the Cathaysia Block during the Columbia
configuration. This model incorporates a three-stage divergent double-
sided subduction: Neoarchean subduction beneath Eastern Cathaysia,
~1.95 Ga double subduction with slab rollback forming LHCS magmatic
belts, and ~1.9-1.8 Ga soft collision producing syn-collisional granites
and back-arc rifting (Ahmad et al., 1999; Kohn et al., 2010; Kaur et al.,
2013).

The Aravalli-Delhi Mobile Belt (ADMB) of NW India comprises
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(a) ~ 2.0 Ga active continental margin and early arc along NICM of Lesser Himalaya
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Fig. 15. Model depicting tectonometamorphic evolution of the Paleoproterozoic Lesser Himalayan metapelitic gneisses during Columbia assembly. (a) represents an
early arc scenario along NICM and extension of Aravalli Craton and Cathaysia Block into the Lesser Himalayan Sequences; (b) represents subduction scenario
facilitated by slab roll-back and attendant mica dehydration melting giving rise to garnet-K-feldspar-cordierite bearing metapelitic gneisses; (c) represents probably

the final phase of collisional event between NICM and Cathaysia Block.

Archean and Paleoproterozoic metamorphic rocks (Joshi, 1984; Sharma
et al., 1987; Joshi et al., 1993; Sinha et al., 1998) which extends up to
NW Himalaya to comprise NICM (Meert and Pandit, 2015). The gran-
ulite facies metamorphism in the ‘Sand Mata’ area of ADMB has been
dated at 1.90-1.78 Ga using zircon-monazite ages by Ghosh et al.,
(2023), which also falls in the age bracket for the two phases of meta-
morphisms within the Askot Klippe, aligning with global intermediate-
to high-T/P metamorphic peaks during Columbia's Stage I (Brown et al.,
2024). Paleoproterozoic magmatism, metamorphism, isotopic signa-
tures in Aravalli Supergroup and Lesser Himalaya and granitic intrusions
in the Cathaysia Block suggest these three supracrustal blocks were
involved in an Andean-type tectono-magmatic arc-subduction set-up
(Yu et al., 2012; Kaur et al., 2013; Wang et al., 2017; Zhao et al., 2023)
and culminated in an intra-cratonic Paleoproterozoic collisional
orogeny during the Columbia assembly. Shared detrital zircon peaks at
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~2.5 Ga and ~1.88 Ga between Aravalli/Delhi Supergroups and Lesser
Himalayan formations match the ~1.9 Ga Badu Complex in Cathaysia,
with synchronous ~1.88-1.86 Ga granulite metamorphism (Richards
et al., 2005; Cawood et al., 2018).

The NICM witnessed collisional orogenic activities, subduction, ac-
cretion, and volcanic arc trench interplay based on the recent work on
the per-aluminous Paleoproterozoic granitic gneisses of the Ramgarh
Group of Kumaun Himalaya (Das et al., 2019, Patel et al. 2025) and S-
type granites of Lesser Himalayan rocks (Kohn et al., 2010), which is in
keeping with the model of Columbia configuration by Hou et al. (2008).
Our data suggest that the metapelites of the Askot Klippe underwent at
least two distinct Paleoproterozoic metamorphic events, with the first
metamorphic event at ca. 1.85 Ga and the second one and the attendant
crustal anatexis at ca. 1.62 Ga. We relate the ca. 1.85 Ga and ca 1.62 Ga
dates during the Columbia amalgamation, with the former tied to
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subduction-collision (e.g., HP granulite at ~1.87 Ga in related orogens)
and the latter to extensional phases with mafic magmatism (~1.69-1.66
Ga) (Brown et al., 2024). The ca. 1.62 Ga event may represent the last
collisional tectonothermal event recorded from any of the Precambrian
Lesser Himalayan rocks associated with subduction-accretion processes,
and these are comparable to the youngest dates recorded for the
Columbia assembly in Australia (Volante et al., 2020; Volante and
Kirscher, 2024), including Barrovian-type intermediate-T/P meta-
morphism from ~1.65-1.60 Ga collisions (Cawood et al., 2020). Some of
the detrital zircon cores from the area yielded older dates ranging be-
tween ca. 2.16 Ga, and ca.1.97 Ga, suggesting that the pelitic precursors
of the syn-Collisional metapelitic gneisses of Askot Klippe (Das et al.,
2019) were deposited in the proto-ocean basins within the NICM. The
provenance of these sediments was likely located in the Indian shield
which acted as a source for sediments rich in Al,O3 and K50, with
detrital populations matching those in the inner Lesser Himalaya
(2.05-1.80 Ga zircons) (Spencer et al., 2017).

Yu et al. (2012) compared the Cathaysia Block which has meta-
morphic ages of ca. 1.89-1.83 Ga, with other Paleoproterozoic orogens
globally and found that it has marked similarities with the South Korean
Peninsula and the Lesser Himalaya of NW India. They conclude that the
eastern Cathaysia block and the South Korean Massif were closely linked
to the Lesser Himalayan rocks during the Paleoproterozoic assembly of
the Columbia supercontinent, supported by Paleoproterozoic magma-
tism in Cathaysia tracing its position adjacent to India (Xia and Xu,
2019). Our metamorphic dates of ~1.85 Ga for the pelitic gneisses from
the Askot Klippe fall between 1.89-1.83 Ga dates suggested for the
Paleoproterozoic orogeny in the Wuyishan terrane of the Cathaysia
Block (Li and Zhao, 2007; Xiang et al., 2008; Yu et al., 2009). The
Paleoproterozoic orogeny in the Cathaysia Block has been linked to the
Columbia Supercontinent assembly (Rogers and Santosh, 2002; Zhao
et al., 2002). Auden (1935); Valdiya (1980); and Bhargava (2000)
argued for the possible extension of Aravalli into the Kumaun Lesser
Himalaya, which is supported by the present work. Our results also
suggest further extension of these rocks into northeast China.

The metamorphic history in the Askot Klippe shows striking simi-
larities to those of the Paleoproterozoic high-grade terranes in adjacent
regions. The present event of ca. ~1.85 Ga aligns well with granulite-
facies metamorphism in the Badu Complex of the Cathaysia Block,
where zircon records collisional orogeny at 1.89-1.88 Ga under similar
P-T conditions driven by arc-continent collision (Yu et al., 2012). Like-
wise, the Aravalli Basin in NW India experienced amphibolite to gran-
ulite facies transition at ca. ~1.9-1.8 Ga, with prograde paths involving
biotite-garnet-kyanite assemblages evolving to sillimanite-K-feldspar-
cordierite, mirroring the reaction textures and P-T trajectories
observed in our study (Wang et al., 2019). In the Vindhyan Basin, north-
central India, metamorphic overprints at ~1.8-1.6 Ga reflect compa-
rable crustal thickening and heating, with evidence of fluid-assisted
anatexis similar to the present study (Zhang et al., 2025). These com-
parisons underscore a unified metamorphic framework, where early
greenschist-amphibolite conditions (ca. 1.85 Ga) represent initial sub-
duction, evolving to granulite-grade peaks (ca. 1.6 Ga) during final
collision, consistent with Columbia's peripheral orogens (Wang et al.,
2018). Basin development in the Lesser Himalaya during the Paleo-
proterozoic involved sedimentation in arc-related basins, transitioning
to collisional forelands amidst supercontinent assembly. This trans-
formation parallels the Aravalli Basin's evolution from a passive margin
at ca. ~2.2 Ga with rifting to an active margin with arc magmatism and
closure by ~1.8 Ga, facilitated by subduction rollback and accretion
(Wang et al., 2019). In the Cathaysia Block, the Badu Complex protoliths
were deposited in proximal arc basins synchronous with ~2.5 Ga
volcanism, followed by ~1.9 Ga basin inversion during orogeny (Yu
et al., 2012). The Vindhyan Basin exhibits analogous shifts, with early
rift basins (~1.8 Ga) giving way to foreland settings by ~1.6 Ga,
reflecting tectonic responses to Columbia assembly and initial rifting
(Zhang et al., 2025). These evolutions highlight episodic orogenic
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extension-compression cycles, with the Lesser Himalaya's nappes and
klippen preserving inverted basin remnants linked to the extension of
the ADMB and docking of Cathaysia Block (Wang et al., 2018). Prove-
nance analyses reveal shared source terrains across these regions. In the
Aravalli Basin, sedimentary provenance shifts from local Archean cra-
tons (~3.3-2.5 Ga) to Paleoproterozoic arcs (~1.9-1.8 Ga), with Hf-O
isotopes suggesting episodic reworking of juvenile material during
Columbia assembly (Wang et al., 2018; Wang et al, 2019). The
Vindhyan Basin records similar provenance variations, in which early
sequences are dominated by ~2.5-1.9 Ga zircons from northern Indian
arcs and later one transition to ~1.6 Ga inputs from collisional orogens.
This progression implies sediment supply from ADMB and potentially
Cathaysia-linked terranes (Zhang et al., 2025). These overlaps support
paleogeographic proximity, with sediment routing from arc systems
along the NICM to basins in Lesser Himalaya, ADMB, and Cathaysia
during Columbia's outgrowth.

In the backdrop, the metapelitic gneisses of Askot Klippe are likely
reworked northernmost extension of the cratonic rocks of the Aravalli
Delhi Mobile Belt, which hold significant clues for the Paleoproterozoic
reconstructions during Columbia Supercontinent assembly, because of
the coeval relationship among the LHCS and Eastern Cathaysia Block
(Webb et al., 2011; DeCelles et al., 2000; Gehrels et al., 2011).

6. Conclusions

Our study in the Askot Klippe of NW Lesser Himalaya uncovers a
polymetamorphic history linked to the late-stage assembly of the
Columbia supercontinent. Through integrated petrographic analysis,
whole-rock geochemistry, thermobarometric calculations, phase dia-
gram modeling, and U-Pb zircon geochronology, we identify multiple
metamorphic events: an initial ca. 1.85 Ga episode reaching at least
upper greenschist facies conditions in an accretionary wedge along the
convergent NICM-Cathaysia margin, and a subsequent ca. 1.62 Ga event
reaching amphibolite-to-granulite facies, driven by subduction-
accretion, slab rollback, and associated crustal anatexis. Notably, high-
resolution P-T path modeling proved unreliable for these poly-
metamorphic gneisses, yielding inconsistencies with other methods,
stemming likely from other kinetic factors such as garnet resorption,
EBC changes from fractionation, anatectic melt presence, and non-fluid-
saturated equilibrium conditions. The derived P-T paths diverge both
from those in the High Himalayan Metamorphics (HHM) and Almora
Nappe, suggesting distinct tectonic regimes. This extended subduction
phase may be consistent temporally with the 1.7-1.6 Ga Mazatzal and
Labradorian orogenies, representing Columbia's final marginal
outgrowth along the NICM prior to rifting. On a regional scale, these
findings further lend support to the tectonic connections among the
Aravalli-Delhi Mobile Belt, the NICM, and the eastern Cathaysia Block,
underscoring their roles as key Paleoproterozoic elements in Columbia's
assembly.
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